• Title/Summary/Keyword: Under-ventilated fires

Search Result 14, Processing Time 0.037 seconds

Simulation of Under-Ventilated Fires (환기부족 화재의 시뮬레이션)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.12-16
    • /
    • 2016
  • Propane fires of 1000 to 3000 kW in the ISO 9705 fire room were simulated using FDS to study the problem of decreasing temperature with increasing fire size. A criterion is proposed for under-ventilated fires. The computed temperature at 2000 kW and above was lower than that at 1500 kW. The heat release rate was limited by a lack of oxygen in the simulation. It was found that the heat release rate can therefore be a criterion for under-ventilated fires in simulations. Fires of 1700 kW and above in the ISO 9705 fire room are predicted to be under-ventilated.

FDS Simulation and Validation on the Under-Ventilated Compartment Fires (환기부족 구획화재에 대한 FDS 해석 및 검증)

  • Ko, Gwon-Hyun;Kim, Sung-Chan;Hamins, A.;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.103-109
    • /
    • 2009
  • In this study, fire simulations on the under-ventilated compartment fires have been conducted using the Fire Dynamics Simulator (FDS Ver. 5.2) and its prediction performance on the thermal and combustion chemical characteristics has been discussed. The temperature and chemical species concentrations in the upper layer of methane, heptane, and toluene fires located in a 2/5 scale compartment based on the ISO-9705 standard room are predicted and compared with the previously published experimental data. The results showed that the FDS simulations reproduced well the temperature of the ceiling and the mixture fraction in the upper layer under the well-ventilation conditions. For the under-ventilated fires, which were taken place due to the insufficient oxygen entrainment, the prediction by the FDS significantly under-estimated the production of carbon monoxide and soot compared to the experimental data.

Numerical Study on the Change in Fire Characteristic as Operating Water-mist in Under-ventilated Compartments (워터미스트 작동에 의한 산소저공급 실내화재 특성 변화에 대한 수치해석 연구)

  • Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.156-161
    • /
    • 2008
  • The present article reports a numerical study on the fire characteristic change by water-mist in under-ventilated compartments. The natural gas and heptane pool fires are used as fire sources, which are located in the bottom center of the 2/5 reduced-scaled model of the ISO 9705 standard room. The fire modeling using the FDS (Fire Dynamics Simulator) is validated by comparison with previously published experimental results. For temperature and combustion gas concentrations at two positions located in the upper layer of compartment, the predicted results with and without water-mist are compared each other. The results show that under the water-mist operation, the predicted temperature and carbon monoxide concentration reduce as $300{\sim}400^{\circ}C$ and about 20%, respectively, compared to those without water-mist.

  • PDF

Prediction Performance of FDS on the Carbon Monoxide Production in the Under-Ventilated Fires (환기부족 화재에서 일산화탄소 발생에 대한 FDS의 예측성능)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.93-99
    • /
    • 2011
  • In the present study, a numerical simulation was conducted to estimate the prediction performance of FDS on the carbon monoxide production in the under-ventilated compartment fires. Methane and heptane fires located in the a 2/5 scale compartment based on the ISO-9705 standard room was simulated using FDS Ver. 5.5. Through the comparison between the computed results and the earlier published experimental data, the performance of FDS was estimated on the predictions of the combustion gases concentration in the hot upper layer of the compartment and the effects of CO yield rate on the estimation of CO production at local points were analyzed. From the results, it was known that FDS Ver. 5.5, in which the two-step reaction mixture fraction model implemented, was more effective on the prediction of CO concentration compared to the previous FDS version. In addition, controlling CO yield rate made the predicted CO concentration get closer to the experimental data for the fires of the under-ventilated condition.

Mixture Fraction Analysis on the combustion gases in the Under-Ventilated Compartment Fires (환기부족 구획화재에서 연소가스의 혼합분율 분석)

  • Ko, Gwon-Hyun;Kim, Sung-Chan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.423-430
    • /
    • 2009
  • 본 논문에서는 ISO-9705 공간의 2/5 스케일 축소모형에 대한 화재 실험에서 측정된 고온 상층부의 연소가스 농도를 혼합분율 개념을 도입하여 분석함으로써 환기부족 상태의 실내화재에서 발생되는 연소생성물의 특성을 파악하고자 한다. 화재실 내부 고온 상층부의 두 지점에서 측정된 잔존 탄화수소, 일산화탄소, 이산화탄소, 산소, 수트(soot) 등의 성분비를 혼합분율의 함수로 내어 분석하였다. 또한 탄화수소 연료의 이상적인 반응에 근거한 상태 관계식과 비교함으로써 환기부족 화재에서 혼합분율 모델의 적용성을 분석하였다. 혼합분율 분석을 이용함으로써 측정된 수많은 데이터들을 화재 크기나 측정 위치에 상관없이 하나의 파라미터에 대해서 정리하여 전체적으로 분석할 수 있었다. 또한 혼합분율 분석에서 수트를 고려하는 것이 분석의 정확성을 크게 향상시킴을 확인할 수 있었다.

  • PDF

A Study on the Combustion Efficiency Concept in Under-ventilated Compartment Fires (환기부족 구획화재에서 연소효율 개념에 대한 고찰)

  • Ko, Gwon-Hyun;Park, Chung-Hwa;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.145-152
    • /
    • 2010
  • A study on combustion efficiency concept was conducted for the under-ventilated fires in a fullscale ISO 9705 room. In particular, a comparison between global combustion efficiency (CE) measured outside the compartment and local CE measured at upper layer inside the compartment was focused. Heptane, toluene and iso-propanol were used to consider the wide ranges of heat of combustion and soot yield. As a result, the global CE was decreased linearly with increasing in global equivalence ratio (GER). On the other hand, the decreasing rate of local CE was increased gradually with increasing in GER. From these results, it was known that the information on local CE was very useful parameter to understand the fire phenomena inside the compartment. In addition, it was discussed that the local CE might be used as an important parameter in the process of scaling for the compartment fires.

Similarity of energy balance in mechanically ventilated compartment fires: An insight into the conditions for reduced-scale fire experiments

  • Suto, Hitoshi;Matsuyama, Ken;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2898-2914
    • /
    • 2022
  • When evaluating energy balance and temperature in reduced-scale fire experiments, which are conducted as an alternative to full-scale fire experiments, it is important to consider the similarity in the scale among these experiments. In this paper, a method considering the similarity of energy balance is proposed for setting the conditions for reduced-scale experiments of mechanically ventilated compartment fires. A small-scale fire experiment consisting of various cases with different compartment geometries (aspect ratios between 0.2 and 4.7) and heights of vents and fire sources was conducted under mechanical ventilation, and the energy balance in the quasi-steady state was evaluated. The results indicate the following: (1) although the compartment geometry varies the energy balance in a mechanically ventilated compartment, the variation in the energy balance can be evaluated irrespective of the compartment size and geometry by considering scaling factor F (∝heffAwRT, where heff is the effective heat transfer coefficient, Aw is the total wall area, and RT is the ratio of the spatial mean gas temperature to the exhaust temperature); (2) the value of RT, which is a part of F, reflects the effects of the compartment geometry and corresponds to the distributions of the gas temperature and wall heat loss.

On the Fire Behavior Due to the Ventilation Condition in the Fire Compartment (환기 조건에 따른 화재거동 연구)

  • Kim, Sung-Chan;Hamins, Anthony
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.367-373
    • /
    • 2008
  • A series of fire experiments has been conducted to provide an improved understanding of the fire structure of under-ventilated compartment fires. A comprehensive and quantitative assessment of gaseous species from the fire was made in the upper layer of fire in a 40 % reduced scale ISO 9705 fire compartment. The global equivalence ratio (GER) concept was used to characterize the fire behavior for various fire sizes, fuel types and ventilation conditions. The oxygen concentration in the upper layer reached to zero near the global equivalence ratio of $0.4{\sim}0.6$ while the carbon monoxide concentration increases with increasing the global equivalence ratio. Classification parameters of ISO19706 were also compared with the reduced scale experimental data for under ventilation fire.

An Experimental Study on Relationship Between Global Equivalence Ratio and Fire Characteristics in Full-Scale Compartment Fires (실제 규모의 구획화재에서 총괄당량비와 화재특성의 상관관계에 관한 실험적 연구)

  • Hwang, Cheol-Hong;Park, Chung-Hwa;Ko, Gwon Hyun;Lock, Andrew
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.32-39
    • /
    • 2010
  • An experimental study was conducted to investigate the relationship between global equivalence ratio(GER) and fire characteristics in an ISO 9705 room. Heptane fuel was burned with different fuel flow rates and doorway widths in order to force the room to be placed in different GER conditions. It was observed that after the onset of under-ventilated fire conditions, temperature and unburned fuel components such as CO and soot increased with increasing heat release rate (HRR), regardless of the doorway width. From the analysis of local mixture fraction, it was reconfirmed that the inclusion of soot production in the product composition was very important to predict accurately the chemical conditions inside the compartment, particularly for the under-ventilated fire conditions. In addition, the local equivalence ratio (LER) was directly proportional to the GER with a unit gradient regardless of doorway width when the soot production was included in the chemical products. This finding provided an important potential that the GER could be used to correlate the local thermal and chemical environment measured at the upper layer of a full-scale enclosure when soot was included.

Effects of the Geometry and Location of an Vertical Opening on the Fire Characteristics in the Under-Ventilated Compartment Fire (환기부족 구획화재에서 수직 개구부의 형상 및 위치가 화재특성에 미치는 영향)

  • Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.20-29
    • /
    • 2013
  • To investigate numerically the effects of geometry and location of vertical opening on the thermal and chemical fire characteristics in full-scale under-ventilated compartment fires, the ventilation factor ($A\sqrt{h}$) to estimate a theoretical maximum inflow of ambient air and the mass loss rate in a heptane pool fire were fixed for all cases. It was shown that variations in door geometry affected significantly the change in thermal and chemical characteristics inside the compartment. Variations in window location resulted in the complex change in additional fire characteristics including the fire duration time and recirculating flow structure. These results were analyzed in details by the multi-dimensional flow and fire characteristics including the vent flow and fuel/air mixing phenomena.