• 제목/요약/키워드: Under-ride

검색결과 85건 처리시간 0.026초

연속 가변식 반능동형 현가시스템의 승차감 및 주행안전성 제어기 설계 해석 (Design Analysis of Ride Comfort- and Driving Safety-control Strategies for the Continuously Controlled Semi-active Suspension Systems)

  • 허승진;황성호;박기홍
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.17-23
    • /
    • 2004
  • The semi-active suspension system is getting widely adopted in passenger vehicles for its ability to improve ride comfort over the passive suspension system while not degrading driving safety. A key to the success is to develop practical controllers that yield performance enhancement over the passive damper under various driving conditions. To this end, several control strategies have been studied and evaluated in this research in consideration of practical aspects such as nonlinearity and dynamics of the damper. From simulation results. it has been observed that, with the proposed control schemes, ride comfort can be significantly upgraded while suppressing degradation of driving safety.

승차감 향상을 위한 동력분산형 고속전철의 진동저감 (Vibration reduction of the high-speed EMU for improvement of ride comfort)

  • 백승국;이래민;신범식;이상원;구자춘;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1435-1440
    • /
    • 2008
  • High-speed train under development is a type of EMU(electric multiple units). Since power sources like motors and gears are distributed in the high-speed EMU, the high-speed EMU generates vibration and sound more than the articulated high-speed train. Vibration of vehicle, vibration between rails and wheels, hunting of bogie and snake motion reduce ride comfort. In this paper, to decrease the vibration of the articulated high-speed train, improvements were presented using an analytical model and a simulation model. The simulation model of the high-speed EMU was designed on the basis of the korean high-speed train and the design parameters for ride comfort were showed and the dynamic characteristics of the vehicle was understood. To consider the characteristics of the vehicle suspension, the analytical model was designed and the simulation model was verified with it.

  • PDF

타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰 (Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure)

  • 맹영준;성민상;최승복;권오영
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1159-1165
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability

  • Guo, Chunyi;Zhao, Chengyong;Peng, Maolan;Liu, Wei
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1367-1379
    • /
    • 2015
  • A hybrid HVDC system that is composed of line commutated converter (LCC) at the rectifier side and voltage source converter (VSC) in series with LCC at the inverter side is studied in this paper. The start-up strategy, DC fault ride-through capability, and fault recovery strategy for the hybrid HVDC system are proposed. The steady state and dynamic performances under start-up, AC fault, and DC fault scenarios are analyzed based on a bipolar hybrid HVDC system. Furthermore, the immunity of the LCC inverter in hybrid HVDC to commutation failure is investigated. The simulation results in PSCAD/EMTDC show that the hybrid HVDC system exhibits favorable steady state and dynamic performances, in particular, low susceptibility to commutation failure, excellent DC fault ride-through, and fast fault recovery capability. Results also indicate that the hybrid HVDC system can be a good alternative for large-capacity power transmission over a long distance byoverhead line.

Fault ride-through 요구를 고려한 풍력발전단지 연계선 보호 거리계전 알고리즘 (Distance Relaying Algorithm for Intertie Protection of a Wind Farm Considering the Fault Ride-through Requirement)

  • 강용철;강해권;정태영;김연희;이영귀
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1053-1058
    • /
    • 2010
  • A large modern wind farm should satisfy the requirements for a grid and accomplish the optimization of the wind farm system. The wind farm intertie protection system should consider a Fault Ride-Through (FRT) requirement for more reliable protection. The wind farm should keep connected to the grid in the case of a grid fault whilst it should be isolated for an intertie fault. This paper proposes a distance relaying algorithm suitable for wind farm intertie protection considering the FRT requirement. The proposed algorithm estimates the impedance based on a differential equation method because the frequency of the voltage and current deviates the nominal frequency. The algorithm extends the reach of Zone 1 up to 100 % of the length of the intertie to implement the FRT requirement. To discriminate an intertie fault from a grid fault, the algorithm uses a voltage blocking scheme because the magnitude of the voltage at the relaying point for an intertie fault becomes less than that for a grid fault. The performance of the algorithm is verified using a PSCAD/EMTDC simulator under various fault conditions. The algorithm can discriminate successfully the intertie fault from grid fault and thus helps to implement the FRT requirement of a wind farm.

한의약소재 스포츠음료수 섭취가 운동-유발성 피로의 단시간 회복에 미치는 영향 (Effect of Oral Sport Beverages with Medicinal Herbs Added on Short-term Recovery from Exercise-induced Fatigue)

  • 나현종;이규락;강호율
    • 대한한의학회지
    • /
    • 제27권1호
    • /
    • pp.36-46
    • /
    • 2006
  • Objectives : Ginseng Research Group in Korea Food Research Institute developed Saeng Mac San (KFRI-2)and Je Ho Tang (KFRI-3) with their sensory factors more acceptable. And we examined their effects on the short-term recovery capacity for cycling exercise (EX) maintained to all-out. Methods : Seven healthy young subjects (aged $24.0{\pm}2.1yr$) were volunteered at this double blind test. Each of KFRI-2, 3, a commercial sport beverage and control (CON) was offered randomly on a series of EX protocol including 65% VO2max-90min EX (D-ride). 1h-recovery and 85% VO2max EX to all-out (P-ride) under the control of their heart rate (HR) and rating perception of exertion (RPE). Blood samples were collected before D-ride, 30, 60 and 90min in D-ride, 30 and 60min in the recovery period and each 10min in P-ride. Plasma analysis items were glucose, insulin, cortisol (CORT), testosterone (TEST), free fatty acid (FFA), $Na^+$, Cl-and $K^+$. The collected data (Means${\pm}$SE) were analysed by two-way ANOVA and statistically significant differences between treatments (p<0.05) by LSD.; the significant level in FFA, $Na^+$, Cl-and $Na^+$ was p<0.01 Results : At 30min during recovery. plasma glucose level in KFRI-3 was significantly higher than CON, and also insulin in KFRI-3 was than CON and KFRI-2. FFA in KFRI-3 was significantly lower than CON during recovery. $Na^+$ in KFRI-3 significantly higher than CON at 90min in D-ride, and also KFRI-2 was at 60min during recovery. However CORT, TEST, Cl-and $Na^+$ in treated beverages were not significant. KFRI-2, 3 elevated the time for P-ride more than CON did. Conclusions : KFRI-2, 3 elevated the time for P-ride about 12% more than CON did. It is based on rapid recovery of plasma glucose level and inhibition of lipolysis during recovery.

  • PDF

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

전자제어 현가장치를 위한 MR 쇽 업소버의 설계 및 제어 (Design and Control of a MR Shock Absorber for Electronic Control Suspension)

  • 성금길;최승복
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.31-39
    • /
    • 2011
  • This paper presents design and control of a quarter-vehicle magneto-rheological (MR) suspension system for ECS (electronic control suspension). In order to achieve this goal, MR shock absorber is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR shock absorber, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, the skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. In order to present control performance of MR shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration of sprung mass and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

피스톤 바이패스 유로가 있는 MR 댐퍼 장착 1/4 차량 현가시스템의 성능평가 (Performance Evaluation of a Quarter Car Suspension System Installed with MR Damper Featuring Bypass Flow Holes in Piston)

  • 김완호;황용훈;박진하;신철수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2017
  • This work presents a comparative work on the ride comfort of a quarter car suspension system between two different magneto-rheological (MR) dampers; one is conventional type without bypass hole and the other is featured by several bypass holes in the piston. As a first step, two different MR dampers are designed on the basis of the governing equation and manufactured with same geometric dimensions except the bypass holes. After investigating the field-dependent damping properties, two dampers are installed to the quarter car suspension system. The suspension model is then derived and a sky-hook controller is implemented to identify vibration control performance under random road. It is shown that the suspension system with MR damper featured by the bypass holes can provide much better ride quality than the case without the bypass holes. This is validated via experimental implementation.

멀티레벨 인버터의 순간정전 보상알고리즘에 관한 연구 (Voltage Dip Compensation Algorithm Using Multi-Level Inverter)

  • 윤홍민;김용
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.133-140
    • /
    • 2013
  • Cascaded H-Bridge multi-level inverters can be implemented through the series connection of single-phase modular power bridges. In recent years, multi-level inverters are becoming increasingly popular for high power applications due to its improved harmonic profile and increased power ratings. This paper presents a control method for balancing the dc-link voltage and ride-through enhancement, a modified pulse width-modulation Compensation algorithm of cascaded H-bridge multi-level inverters. During an under-voltage protection mechanism, causing the system to shut down within a few milliseconds after a power interruption in the main input sources. When a power interruption occurs finish, if the system is a large inertia restarting the load a long time is required. This paper suggests modifications in the control algorithm in order to improve the sag ride-through performance of ac inverter. The new proposed strategy recommends maintaining the DC-link voltage constant at the nominal value during a sag period, experimental results are presented.