• 제목/요약/키워드: Under-actuated system

검색결과 42건 처리시간 0.025초

Computational electromechanical approach for stability/instability of smart system actuated with piezoelectric NEMS

  • Luo, Zhonghua;Cheng, Xiaoling;Yang, Yuhan
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.211-227
    • /
    • 2022
  • In this research, the size-dependent impact of an embedded piezoelectric nanoplate subjected to in-plane loading on free vibration characteristic is studied. The foundation is two-parameter viscoelastic. The nonlocal elasticity is employed in order to capture the influence of size of the plate. By utilizing Hamilton's principle as well as the first- order shear deformation theory, the governing equation and boundary conditions are achieved. Then, using Navier method the equations associated with the free vibration of a plate constructed piezoelectric material under in-plane loads are solved analytically. The presented formulation and solution procedure are validated using other papers. Also, the impacts of nonlocal parameter, mode number, constant of spring, electric potential, and geometry of the nanoplate on the vibrational frequency are examined. As this paper is the first research in which the vibration associated with piezoelectric nanoplate on the basis of FSDT and nonlocal elasticity is investigated analytically, this results can be used in future investigation in this area.

미지의 부하와 흔들림 각속도를 갖는 컨테이너 크레인의 2차 슬라이딩 모드 제어 (A Second Order Sliding Mode Control of Container Cranes with Unknown Payloads and Sway Rates)

  • 백운보
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.145-149
    • /
    • 2015
  • This paper introduces a sway suppression control for container cranes with unknown payloads and sway rates. With no priori knowledge concerning the magnitude of payload mass and sway rate, the proposed control maintains superior sway suppressing and trolley positioning against external disturbances. The proposed scheme combines a second order sliding mode control and an adaptive control to cope with unknown payloads. A second order sliding mode control without feedback of the sway rate is first designed, which is based on a class of feedback linearization methods for stabilization of the under-actuated sway dynamics of the container. Under applicable restrictions of the magnitude of payload inertia and sway rate, a linear regression model is obtained, and an adaptive control with a payload estimator is then designed, which is based on Lyapunov stability methods for the fast attenuation of trolley oscillations in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulation are shown in the existence of initial sway and external wind disturbances.

단일 구동부를 갖는 2축 도립진자의 자세제어 (Posture control of double inverted pendulum with a single actuator)

  • 이건영
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.577-584
    • /
    • 1999
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link of the target pendulum system is hinged on the plate to free for rotation in the specified range($10^{\cire}$) on the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though it has no actuator in lower hinge. The algorithm to control the inverted pendulum consists of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a nonlinear feedback compensator for the rest of the range. Conventional state feedback control is employed, and the fuzzy controller is responsible for generating the reference joint angle of the upper link for the nonlinear feedback compensator which drives a DC motor to generate an indirect torque to the lower joint. As a result, we can get the upright posture of the proposed pendulum system. Simulations and experiments are conducted to show the validity of the proposed controller.

  • PDF

자동 광 정렬시스템 및 최적 광 정렬알고리즘의 개발 (Development of Automatic Optical Fiber Alignment System and Optimal Aligning Algorithm)

  • 엄철;김병희;최영석
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.194-201
    • /
    • 2004
  • Optical fibers are indispensable fer optical communication systems that transmit large volumes of data at high speed. But the aligning technology under the sub-micron accuracy is required for the precise axis adjustment and connection. For the purpose of precise alignment of the optical arrays, in this research, we have developed the 12-axis(with 8 automated axis and 4 manual axis) automatic optical fiber alignment system including the image processing-based searching system, the automatic loading system using the robot and the suction toot and the automatic UV bonding system. In order to obtain the sub-micron alignment accuracy, two 4-axis PC-based motion controllers and the two 50nm resolution 6-aixs micro-stage actuated by micro stepping motors are adopted. The fiber aligning procedure consists of two steps. Firstly, the optical wave guide and an input optical array are aligned by the 6-axis input micro-stage with the IR camera. The image processing technique is introduced to reduce primary manual aligning time and result in achieving the 50% decrease of aligning time. Secondly, the IR camera is replaced by the output micro-stage and a wave guide and two optical arrays are aligned simultaneously before the laser power intensity delivered to the optical powermeter reached the threshold value. When the aligning procedure is finished, the wave guide and arrays are W bonded. The automatic loading/unloading system is also introduced and the entire wave guide handing time is reduced significantly compared to the former commercial aligning system.

FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석 (Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM)

  • 서창민;지현철
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.

사각 단면 채널에서의 자연순환 유동에 관한 연구 (Natural Circulation Flow Investigation in a Rectangular Channel)

  • 하광순;김재철;박래준;김상백;홍성완
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3086-3091
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled-down as the half height and 1/238 rectangular channel area of the APR1400 reactor vessel. As the water inlet area increased, the natural circulation mass flow rate asymptotically increased, that is, it converged at a specific value. And the circulation mass flow rate also increased as the outlet area, injected air flow rate, and outlet height increased. But the circulation mass flow rate was not changed along with the external water level variation if the water level was higher than the outlet height.

  • PDF

무인선의 도킹을 위한 유도법칙 설계 (Design of Guidance Law for Docking of Unmanned Surface Vehicle)

  • 우주현;김낙완
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.208-213
    • /
    • 2016
  • This paper proposes a potential field-based guidance law for docking a USV (unmanned surface vehicle). In most cases, a USV without side thrusters is an under-actuated system. Thus, there are undockable regions near docking stations where a USV cannot dock to a docking station without causing a collision or backward motion. This paper suggest a guidance law that prevents a USV from enter such a region by decreasing the lateral error to the docking station at the initial stage of the docking process. A Monte-carlo simulation was performed to validate the performance of the proposed method. The proposed method was compared to conventional guidance laws such as pure pursuit guidance and pure/lead pursuit guidance. As a result, the collision angle and lateral distance error of proposed method tended to have lower values compared to conventional methods.

원자로 용기 외벽냉각을 위한 1차원 이상유동 실험 및 해석 (1-D Two-phase Flow Investigation for External Reactor Vessel Cooling)

  • 김재철;박래준;조영로;김상백;김신;하광순
    • 대한기계학회논문집B
    • /
    • 제31권5호
    • /
    • pp.482-490
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests and the simple analysis were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The calculated circulation flow rate was similar to experimental ones within about ${\pm}$15% error bounds and depended on the form loss due to the inlet/outlet area.

A study on the modeling of a hexacopter

  • Le, Dang-Khanh;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1023-1030
    • /
    • 2015
  • The purpose of this paper is to present the basic mathematical modeling of a hexacopter, which could be used to develop proper methods for stabilization and trajectory control. A hexacopter consists of six rotors with three pairs of counter-rotating fixed-pitch blades. This mechanism is an under-actuated, dynamically unstable, six-degrees-of-freedom system. The whole motion of this object consists of translational and rotational motion in three dimensions, where the translational motion is created by changing the direction and magnitude of the upward propeller thrust. The hexacopter is controlled by adjusting the angular velocities of the rotors, which are spun by electric motors. It is assumed to be a rigid body; thus, the differential equation of the hexacopter dynamics can be derived from the Newton-Euler equation. The Euler-angle parametrization of the three-dimensional rotations contains singular points in the coordinate space that can cause failure of both the dynamical model and control. In order to avoid singularities, the rotations of the hexacopter are parametrized in terms of quaternions. This choice has been made considering the linearity of the quaternion formulation and their stability and efficiency. Further, control simulation of a hexacopter applying cascaded-PID control is also presented in this paper.

반도체 생산에서 진동 제어를 위한 전자기 에어 스프링 (An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing)

  • 김형태;김철호;이강원;이규섭;손성완
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1128-1138
    • /
    • 2010
  • 정밀 방진에서 전형적인 문제로 고하중으로 인한 저주파 공진 특성이 있다. 전자기 에어 스프징은 진동 제어 장치이자 능동형 방진 장치이다. 이 연구에서 전자기 에어 스프링은 반도체 생산을 위한 저주파 공진을 제거하는 것을 목적으로 한다. 능동형 방진 장치로 기계 및 전가 부분은 2.5톤의 하 중에 작동되도록 설계하였다. 전자기 스프링은 탄성 공압 챔버 내에 공기압을 이용하여 띄우고, 전자기 된 시스템에 의하면 공진 주파수 영역에서 제어 시간 및 최고 피크가 상당히 줄어들었고, 그 결과 피동형 시스템 상의 고유 진동에 의해 발생되는 공진을 피할 수 있음을 보였다.