• Title/Summary/Keyword: Under frame

Search Result 1,689, Processing Time 0.031 seconds

Fatigue Strength Investigation of Bogie Frame for the Tilting Train under DIC standard (UIC기준에 근거한 틸팅 대차프레임의 피로강도평가)

  • Kim Jung-Seok;Kim Nam-Po;Park Byung-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.589-594
    • /
    • 2004
  • This paper has evaluated the fatigue strength of a tilting bogie frame for the Korean tilting train. We have established the loading combinations for the tilting bogie frame based on the UIC standard because there are no standards for the tilting train. For this study, we have derived 31 load cases to consider tilting effect. Then, we have performed the static and fatigue analysis. From this study, we can make sure the safety of the tilting bogie.

  • PDF

Structural Weak Area Analysis of an Electric Car Bogie Frame by Finite Element Analysis (유한요소 해석에 의한 전동차 대차 프레임의 구조 취약부 해석)

  • Goo Byeong-Choon;Whang Won-Joo;Choi Sung-Kyu;Oh Il-Geun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.628-633
    • /
    • 2004
  • we studied the structural weak areas of an electric car bogie frame by finite element analysis. The bogie frame under consideration is a part of the standard electric car with aluminium car body. Vertical, torsional. lateral and longitudinal loadings were applied. Numerical results were compared with the experimental results. The two results are in a good agreement.

  • PDF

A Guideline for Motion-Image-Quality Improvement of LCD-TVs

  • Kurita, Taiichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1164-1167
    • /
    • 2009
  • Motion-image-quality of LCD-TVs is discussed by dynamic spatial frequency response. Smaller temporal aperture or higher frame rate can improve dynamic response, but an increase of motion velocity easily cancels the improvement. A guideline for deciding the desirable temporal aperture and frame rate of LCD-TVs is described, under the condition that camera and display have the same parameters. Two candidates of the desirable parameter sets will be (240 or 300 Hz, 50 to 100% aperture) and (120Hz, 25 to 50% aperture), from the viewpoint of "limit of acceptance" on motion-imagequality-deterioration for critical picture materials.

  • PDF

Challenge in the Structural Design of Suzhou IFS

  • Zhou, Jianlong;Huang, Yongqiang
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.165-171
    • /
    • 2021
  • Core-outrigger-mega frame system is used in Suzhou IFS with 95-story, 450 m-tall, which is beyond Chinese code limit. Besides simple introduction on design principle, structure system and analysis, key techniques including performance based design criteria, frame shear ratio, capacity check of mega column, human comfort criteria under wind induced vibration and TSD design were presented in details for reference of similar super tall building design.

On Ruled Surfaces with a Sannia Frame in Euclidean 3-space

  • Senyurt, Suleyman;Eren, Kemal
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.509-531
    • /
    • 2022
  • In this paper we define a new family of ruled surfaces using an othonormal Sannia frame defined on a base consisting of the striction curve of the tangent, the principal normal, the binormal and the Darboux ruled surface. We examine characterizations of these surfaces by first and second fundamental forms, and mean and Gaussian curvatures. Based on these characterizations, we provide conditions under which these ruled surfaces are developable and minimal. Finally, we present some examples and pictures of each of the corresponding ruled surfaces.

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

Performance Evaluation of Ethernet Frame Burst Mode in EPON Downstream Link

  • Jia, Wen-Kang;Chen, Yaw-Chung
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.290-300
    • /
    • 2008
  • We apply IEEE 802.3 frame burst mode (FBM) to the Ethernet passive optical network (EPON) downstream link and compare its performance with non-frame burst mode for various traffic patterns. Although in light traffic loads (p<0.5) the efficiency of the FBM mechanism is not significant, it does feature high throughput, small jitter, low queue occupancy, and short queuing delay in optical line terminals under various traffic loads with various numbers of optical network units (ONUs). The FBM performance always approaches that of full-duplex mode, especially under heavy traffic loads (p>0.5). Moreover, an increase in number of ONUs will decrease the burst performance. Our work shows that FBM scheme is very useful for EPON transmission and has low design complexity.

  • PDF

RCC frames with ferrocement and fiber reinforced concrete infill panels under reverse cyclic loading

  • Ganesan, N.;Indira, P.V.;Irshad, P.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • An experimental investigation was carried out to study the strength and behavior of reinforced cement concrete (RCC) frames with ferrocement and fiber reinforced concrete infill panel. Seven numbers of $1/4^{th}$ scaled down model of one bay-three storey frames were tested under reverse cyclic loading. Ferrocement infilled frames and fiber reinforced concrete infilled frames with varying volume fraction of reinforcement in infill panels viz; 0.20%, 0.30%, and 0.40% were tested and compared with the bare frame. The experimental results indicate that the strength, stiffness and energy dissipation capacity of infilled frames were considerably improved when compared with the bare frame. In the case of infilled frames with equal volume fraction of reinforcement in infill panels, the strength and stiffness of frames with fiber reinforced concrete infill panels were slightly higher than those with ferrocement infill panels. Increase in volume fraction of reinforcement in the infill panels exhibited only marginal improvement in the strength and behavior of the infilled frames.

Structural Analysis and Evaluation Technologies of Automotive Seat Frames (자동차 시트 프레임의 강도설계 및 평가기술 개발)

  • Woo, C.S.;Koo, J.S.;Cho, H.J.;Kim, H.S.;Jeong, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.806-811
    • /
    • 2001
  • To develop design and evaluation technologies of automotive seat frames, structural analysis and fatigue tests have been performed. Under the back moment loading condition, the numerical simulation yielded the maximum stress over the yield strength at the side frame bracket. To measure the stresses under the test condition, strain gauges were attached on some weakest points of the side frames. the measured strains are in good agreements with the CAE results. On the other hand, fatigue tests have been performed using the side frame bracket specimens made of various welding types to estimate their durabilities. From the fatigue test results and the analysis ones, it was recommended that the welding position of the bracket should be moved upward.

  • PDF

A Study on the Multiaxial Fatigue Analysis of Bogie Frame for High Speed Train (고속전철용 대차프레임의 다축피로해석에 관한 연구)

  • 이상록;이학주;한승우;강재윤
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.344-351
    • /
    • 1999
  • Stress analysis of bogie frame by using the finite element method has been performed for the various loading conditions according to the UIC (International Union of Railways) Code 615-4. Multiaxial fatigue damage models such as signed von Mises method and typical critical plane theories were reviewed, and multiaxial fatigue analysis program (MUFAP) has been developed. Fatigue analysis of bogie frame under multiaxial loading was performed by using MUFAP and finite element analysis results. The procedure developed in this study is considered to be useful for the life prediction in preliminary design stage of railway components under multiaxial loading conditions. 3-dimensional surface modeling, mesh generation and finite element analysis were performed by Pro-Engineer, MSC/PATRAN and MSC/NASTRAN, respectively, which were installed in engineering workstation.

  • PDF