• Title/Summary/Keyword: Under Sampling

Search Result 1,096, Processing Time 0.027 seconds

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Effects of Social Support and Hope on Life Satisfaction of College Students: Moderated Mediation Model of Only-Child Status (대학생의 사회적 지지와 희망이 삶의 만족도에 미치는 영향: 외동자녀 지위의 조절매개 모형)

  • Ting Ting Ma;Chang Seek Lee
    • Industry Promotion Research
    • /
    • v.8 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • The purpose of this study is to investigate the moderated mediation effect of an only-child status on the mediating effect of hope in the relationship between social support and life satisfaction of college students. The participants for this study were 302 undergraduates selected from a university in Guangdong province of China under a purposive sampling way. SPSS PC+ Win. ver. 25.0 and SPSS PROCESS macro ver. 4.2 were used to analyze the data. The applied statistical techniques were frequency analysis, reliability analysis, correlation analysis, and moderated mediation effect analysis. The results were as follows: First, there were positive and significant correlations between social support, hope and life satisfaction. Second, as a result of the moderated mediating effect analysis, the indirect effect of social support on life satisfaction through hope was higher for only children than for other children. Based on this, suggestions were made to improve life satisfaction.

Effect of Static Stretching and Myofascial Release Techniques on Kinematic Factors of Lower Extremity Joints during Squat (스쿼트 동작 시 정적 스트레칭과 근막이완기법이 하지 관절의 운동학적 요인에 미치는 영향 )

  • Seung-Ki An;Moon-Seok Kwon;Jae-Woo Lee;Young-Tae Lim
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • Objective: The purpose of this study was to analyze the differences in kinematic factors according to stretching treatment, myofascial release treatment, and static stretching treatment conditions during squat. Method: Twelve males with resistance training experience participated in this study. Participants performed squats without treatment (Pre-Test), and performed squats after treatment with the myofascial release technique (MRT) and static stretching (SS) on different days (post-test). Squat movements were captured using eight motion capture cameras (sampling rate: 250 Hz), and the peak joint angles of the ankle, knee, hip, and pelvis were calculated for each direction. One-way repeated ANOVA and Bonferroni post hoc analyses using SPSS 27 (IBM Corp. Armonk NY, USA) were used to compare the peak joint angle of the lower extremity joints and pelvis among the normal condition (squat without treatment), MRT condition (squat after MRT treatment) and SS condition (squat after static stretching). The statistical significance level was set at .05. Results: It was observed that the maximum ankle joint flexion angle during squats was statistically reduced under conditions of myofascial release and static stretching (p<.05), in comparison to the scenario where no stretching was performed. Furthermore, static stretching was found to enhance the maximum hip flexion angle during squat (p<.05), whereas the myofascial release stretching technique resulted in the minimal posterior pelvic tilt angle (p<.05). Conclusion: Employing myofascial release stretching as a preparatory exercise proved to be more efficacious in maintaining body stability throughout the execution of high-intensity squat movements by effectively managing the posterior tilt of the pelvis, as opposed to foregoing stretching or engaging in static stretching.

A Study on the Application of Modeling to predict the Distribution of Legally Protected Species Under Climate Change - A Case Study of Rodgersia podophylla - (기후변화에 따른 법정보호종 분포 예측을 위한 종분포모델 적용 방법 검토 - Rodgersia podophylla를 중심으로 -)

  • Yoo, Youngjae;Hwang, Jinhoo;Jeon, Seong-woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.29-43
    • /
    • 2024
  • Legally protected species are one of the crucial considerations in the field of natural ecology when conducting environmental impact assessments (EIAs). The occurrence of legally protected species, especially 'Endangered Wildlife' designated by Ministry of Environment, significantly influences the progression of projects subject to EIA, necessitating clear investigations and presentations of their habitats. In perspective of statistics, a minimum of 30 occurrence coordinates is required for population prediction, but most of endangered wildlife has insufficient coordinates and it posing challenges for distribution prediction through modeling. Consequently, this study aims to propose modeling methodologies applicable when coordinate data are limited, focusing on Rodgersia podophylla, representing characteristics of endangered wildlife and northern plant species. For this methodology, 30 random sampling coordinates were used as input data, assuming little survey data, and modeling was performed using individual models included in BIOMOD2. After that, the modeling results were evaluated by using discrimination capacity and the reality reflection ability. An optimal modeling technique was proposed by ensemble the remaining models except for the MaxEnt model, which was found to be less reliable in the modeling results. Alongside discussions on discrimination capacity metrics(e.g. TSS and AUC) presented in modeling results, this study provides insights and suggestions for improvement, but it has limitations that it is difficult to use universally because it is not a study conducted on various species. By supporting survey site selection in EIA processes, this research is anticipated to contribute to minimizing situations where protected species are overlooked in survey results.

Clinical utility of endoscopic ultrasound-guided tissue acquisition for comprehensive genomic profiling of pancreatic cancer

  • Nozomi Okuno;Kazuo Hara;Nobumasa Mizuno;Shin Haba;Takamichi Kuwahara;Yasuhiro Kuraishi;Daiki Fumihara;Takafumi Yanaidani
    • Clinical Endoscopy
    • /
    • v.56 no.2
    • /
    • pp.221-228
    • /
    • 2023
  • Background/Aims: Endoscopic ultrasound-guided tissue acquisition (EUS-TA) is essential for the diagnosis of pancreatic cancer. The feasibility of comprehensive genomic profiling (CGP) using samples obtained by EUS-TA has been under recent discussion. This study aimed to evaluate the utility of EUS-TA for CGP in a clinical setting. Methods: CGP was attempted in 178 samples obtained from 151 consecutive patients with pancreatic cancer at the Aichi Cancer Center between October 2019 and September 2021. We evaluated the adequacy of the samples for CGP and determined the factors associated with the adequacy of the samples obtained by EUS-TA retrospectively. Results: The overall adequacy for CGP was 65.2% (116/178), which was significantly different among the four sampling methods (EUS-TA vs. surgical specimen vs. percutaneous biopsy vs. duodenal biopsy, 56.0% [61/109] vs. 80.4% [41/51] vs. 76.5% [13/17] vs. 100.0% [1/1], respectively; p=0.022). In a univariate analysis, needle gauge/type was associated with adequacy (22 G fine-needle aspiration vs. 22 G fine-needle biopsy [FNB] vs. 19 G-FNB, 33.3% (5/15) vs. 53.5% (23/43) vs. 72.5% (29/40); p=0.022). The sample adequacy of 19 G-FNB for CGP was 72.5% (29/40), and there was no significant difference between 19 G-FNB and surgical specimens (p=0.375). Conclusions: To obtain adequate samples for CGP with EUS-TA, 19 G-FNB was shown to be the best in clinical practice. However, 19 G-FNB was not still sufficient, so further efforts are required to improve adequacy for CGP.

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

Terrestrial pest gastropod diversity and spatiotemporal variations in highland agricultural lands of Sri Lanka

  • Dinelka Thilakarathne;Nadeela Hirimuthugoda;Kithsiri Ranawana;Shalika Kumburegama
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.60-73
    • /
    • 2024
  • Background: The available information on terrestrial pest gastropods and their impact on the environment worldwide is scarce and outdated. The present study aimed to address this gap by conducting the first comprehensive survey of pest gastropods in the Nuwara Eliya District, an important vegetable growing area in the highlands of Sri Lanka. Eighty agricultural lands were surveyed over two years by establishing ten 1 m2 sampling plots per crop type in each agricultural land. Geo-coordinates, air temperature, elevation, relative humidity, daily rainfall, soil pH, species richness and abundance were recorded for rainy and non-rainy periods. The relationship between species composition and environmental variables was analyzed using multi-regression models and distribution maps. Results: Out of the 14 species recorded in agricultural lands, nine were identified as exotic pest species. Species abundance (t = 4.69, p < 0.05) and diversity was higher in the rainy period and the dominant species during this period were Bradybaena similaris (t = 2.69, p < 0.05) and Deroceras reticulatum (t = 2. 46, p < 0.05). Eggs and estivating adults were found in soil and under decaying organic matter during the non-rainy period. The exotic species showed broader preferences for the measured environmental factors and showed a wider range in distribution compared to the native species. Variation in pest gastropod composition was significantly accounted for by elevation, relative humidity, soil pH and daily rainfall. Additionally, the species richness and abundance varied across locations due to the combined effects of elevation, crop type and stage, and field type. Conclusions: The study emphasizes the importance of understanding the biology and ecology of gastropod pests to develop effective management strategies. By considering the influence of environmental factors and implementing appropriate soil management techniques, such as targeting specific habitats and crop stages, it is possible to mitigate pest populations and minimize their impact on agricultural lands. Overall, this research contributes valuable insights into the dynamics and interactions of terrestrial gastropods in agricultural ecosystems, supporting sustainable pest management practices.

Research on unsupervised condition monitoring method of pump-type machinery in nuclear power plant

  • Jiyu Zhang;Hong Xia;Zhichao Wang;Yihu Zhu;Yin Fu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2220-2238
    • /
    • 2024
  • As a typical active equipment, pump machinery is widely used in nuclear power plants. Although the mechanism of pump machinery in nuclear power plants is similar to that of conventional pumps, the safety and reliability requirements of nuclear pumps are higher in complex operating environments. Once there is significant performance degradation or failure, it may cause huge security risks and economic losses. There are many pumps mechanical parameters, and it is very important to explore the correlation between multi-dimensional variables and condition. Therefore, a condition monitoring model based on Deep Denoising Autoencoder (DDAE) is constructed in this paper. This model not only ensures low false positive rate, but also realizes early abnormal monitoring and location. In order to alleviate the influence of parameter time-varying effect on the model in long-term monitoring, this paper combined equidistant sampling strategy and DDAE model to enhance the monitoring efficiency. By using the simulation data of reactor coolant pump and the actual centrifugal pump data, the monitoring and positioning capabilities of the proposed scheme under normal and abnormal conditions were verified. This paper has important reference significance for improving the intelligent operation and maintenance efficiency of nuclear power plants.

Physico-Chemical Properties of Soils at Red Pepper, Garlic and Onion Cultivation Areas in Korea (우리나라 고추, 마늘 및 양파 주산지 밭토양의 물리·화학적 특성)

  • Sohn, Bo-Kyoon;Cho, Ju-Sik;Kang, Jong-Gu;Cho, Ja-Yong;Kim, Kil-Yong;Kim, Hyun-Woo;Kim, Hong-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.123-131
    • /
    • 1999
  • To get the basic information for the improvement of the optimum levels of upland soil fertility and fertilizer application, the soil samples in two hundred fifteen site were collected from the major condiment vegetable cultivation areas such as red pepper, garlic and onion fields. Physico-chemical properties of the soil samples were investigated. Soil texture distribution of soil samples in red pepper, garlic and onion cultivation areas was in order of loam (L), sandy loam (SL), silt loam (SiL) and clay loam (CL) (35.4, 31.6, 14.9 and 7.0%, respectively). The average pH of soil in garlic and onion cultivation areas were over pH 6.0, whereas in red pepper was under pH 5.5. The frequency distribution of soil pH in total sampling sites were 58.7% in under pH 6.0 and 21.4% in below pH 5.0, in contrast to 10.3% in over pH 7.0. The organic matter contents were in the range of $20{\sim}30g\;kg^{-1}$, and the onion field soils was a little higher than those in red pepper or garlic. The available phosphate contents were in the range of $719{\sim}746mg\;kg^{-1}$ and were not different among in red pepper, garlic and onion. The frequency distribution of available phosphate in total sampling sites were found 62.8% of above $600mg\;kg^{-1}$, which was over the standard level for upland soil improvement, and then 22.3% was exceeded $1,000mg\;kg^{-1}$, especially. In the exchangeable cations, the K and Ca contents in garlic (1.27 and $9.11cmol\;kg^{-1}$) and onion (1.20 and $8.39cmol\;kg^{-1}$) were higher than in red pepper (0.96 and $5.87cmol\;kg^{-1}$), respectively. The Mg contents in garlic field soils ($2.17cmol\;kg^{-1}$) were higher than those in red pepper and onion (1.51 and $1.80cmol\;kg^{-1}$). This exchangeable K, Ca and Mg contents were higher than the standard level for upland soil improvement. The contents of microelement were ranged in $54.3{\sim}60.1mg\;kg^{-1}$ for Fe, $31.3{\sim}42.3mg\;kg^{-1}$ for Mn, $1.7{\sim}2.3mg\;kg^{-1}$ for Cu and $4.8{\sim}5.5mg\;kg^{-1}$ for Zn, respectively.

  • PDF

Evaluation of Basic Oxygen Furnace Slag as Soil Conditioner in the Soybean Upland Field (밭토양 콩재배에서 제강슬래그의 토양개량제로서의 시용 효과)

  • Lim, June-Taeg;Kim, Hee-Kwon;Park, In-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.493-497
    • /
    • 2000
  • An experiment was conducted to evaluate the possibility of using basic oxygen furnace (BOF) slag as soil conditioner in soybean upland field. In 1997, soybean (Glycine max L. cv. Eunha) crop was cultivated under different application rates of BOF slag at an experimental field of Chonnam Rural Development Administration in Nampyung, Najoo city. Five treatments, four application rates of BOF slag (0, 4, 8, $12Mg\;ha^{-1}$) and one application rate of lime ($2Mg\;ha^{-1}$) were tried with three replications. Plant height and shoot dry weight per plant were measured five times during the growth period. Chemical contents of soybean plant tissues and soil were also measured at the same sampling date. Yield were estimated by harvesting $6.6m^2$ per experimental unit and yield components were measured by sampling 10 plants per experimental unit at the harvest date. In upland soil, application of BOF slag rarely affected contents of total nitrogen, organic matter, available phosphate and potassium in soil. Soil pH, and contents of Ca and Fe in soil became higher as BOF slag rate increased. Enhancement of soil pH by application of BOF slag appeared to be closely related with increase in soil Ca content. Application rate of $2Mg\;ha^{-1}$ of lime showed almost the same effect in increase of soil Ca content as application rate of $4{\sim}8Mg\;ha^{-1}$ of BOF slag. Slag treatment hardly affected the contents of total nitrogen, $P_2O_5$, CaO, $K_2O$ and MgO in the shoot of soybean plants. Soybean plants under treatments of BOF salg showed better growth from the earlier growth stage compared with those of control treatment, and at the later growth stage, their growth was even superior to that of lime treatment. BOF slag rate of $8Mg\;ha^{-1}$ showed the highest soybean yield with $1,232kg\;ha^{-1}$. which was $330kg\;ha^{-1}$ or 37% higher than the yield of control with $902kg\;ha^{-1}$, As a result, BOF slag appeared to be useful material as a soil conditioner as well as nurient source for Ca and Fe in upland soybean fields, and its optimal rate for higher yield seemed to be around $8Mg\;ha^{-1}$.

  • PDF