• Title/Summary/Keyword: Uncoupling Protein 3 (UCP3) Gene

Search Result 26, Processing Time 0.025 seconds

Gene expression and promoter methylation of porcine uncoupling protein 3 gene

  • Lin, Ruiyi;Lin, Weimin;Chen, Qiaohui;Huo, Jianchao;Hu, Yuping;Ye, Junxiao;Xu, Jingya;Xiao, Tianfang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.170-175
    • /
    • 2019
  • Objective: Uncoupling protein 3 gene (UCP3) is a candidate gene associated with the meat quality of pigs. The aim of this study was to explore the regulation mechanism of UCP3 expression and provide a theoretical basis for the research of the function of porcine UCP3 gene in meat quality. Methods: Bisulfite sequencing polymerase chain reaction (PCR) and quantitative real-time PCR (Q-PCR) were used to analyze the methylation of UCP3 5′-flanking region and UCP3 mRNA expression in the adipose tissue or skeletal muscle of three pig breeds at different ages (1, 90, 210-day-old Putian Black pig; 90-day-old Duroc; and 90-day-old Dupu). Results: Results showed that two cytosine-guanine dinucleotide (CpG) islands are present in the promoter region of porcine UCP3 gene. The second CpG island located in the core promoter region contained 9 CpG sites. The methylation level of CpG island 2 was lower in the adipose tissue and skeletal muscle of 90-day-old Putian Black pigs compared with 1-day-old and 210-day-old Putian Black pigs, and the difference also existed in the skeletal muscle among the three 90-day-old pig breeds. Furthermore, the obvious changing difference of UCP3 mRNA expression was observed in the skeletal muscle of different groups. However, the difference of methylation status and expression level of UCP3 gene was not significant in the adipose tissue. Conclusion: Our data indicate that UCP3 mRNA expression level was associated with the methylation status of UCP3 promoter in the skeletal muscle of pigs.

Identification of Novel SNPs with Effect on Economic Traits in Uncoupling Protein Gene of Korean Native Chicken

  • Oh, J.D.;Kong, H.S.;Lee, J.H.;Choi, I.S.;Lee, S.J.;Lee, S.G.;Sang, B.D.;Choi, C.H.;Cho, B.W.;Jeon, G.J.;Lee, H.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1065-1070
    • /
    • 2006
  • The avian uncoupling protein (avUCP) is a member of the mitochondrial transporter superfamily that uncouples proton entry in the mitochondrial matrix from ATP synthesis. The sequencing analysis method was used to identify nucleotide polymorphisms within the avUCP gene in Korean native chicken (KNC). This study identified ten single nucleotide polymorphisms (SNPs) in the avUCP gene. We analyzed the SNPs of the avUCP gene to investigate whether polymorphism in the gene might be responsible for quantitative variations in economic traits in KNC. Three significant polymorphic sites for economic traits were avUCP C+282T (mean body weight, p<0.05), avUCP C+433T (daily percent lay, p<0.05), and avUCP T+1316C (daily percent lay, p<0.05). The frequency of each SNP was 0.125 (C+282T in avUCP gene exon 1 region), 0.150 (C+433T in avUCP gene intron 1 region), and 0.15 (T+1316C in avUCP gene exon 3 region), respectively. Among the identified SNPs, one pair of SNPs (genotype CC, C+282T and TT, avUCP C+433T) showed the highest daily percent lay (p<0.05) and mean body weight (p<0.05) and the frequency was 0.067. This study of the avUCP gene could be useful for genetic studies of this gene and selection on economic traits for KNC.

The +1316 T/T Genotype in the Exon 3 of Uncoupling Protein Gene is Associated with Daily Percent Lay in Korean Native Chicken (한국 재래 닭의 Uncoupling Protein 유전자 Exon 3에서의 +1316 T/T 유전자형이 산란율에 미치는 효과 분석)

  • Oh J. D.;Lee J. H.;Hong Y. S.;Lee S. J.;Lee S. G.;Kong H. S.;Sang B. D.;Choi C. H.;Cho B. W.;Jeon G. J.;Lee H. K.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 2005
  • Uncoupling protein(UCP) is expressed exclusively in brown adipose tissue(BAT). It is blown to uncouple phosphorylation from oxidation and hence to be involved in energy metabolism and heat production, especially under cold exposure. In the present study, we identified single nucleotide polymorphism(SNP) in exon 3 of avUCP gene in Korean native chicken(KNC) population. It was detected a SNP T+1316C in exon 3 of avUCP gene by sequence analysis in KNC population. For PCR-RFLP analysis of the SNP T+1316C, used by AP III restriction enzyme. The result of PCR-RFLP analysis showed that allele T has two fragments of 255 bp and 86 bp, and allele C has only one fragment of 341 bp. The genotype frequencies were TT type, 0.7875; TC type, 0.1875 and CC type, 0.025; and the frequencies of allele T and C were 0.881 and 0.119, respectively in KNC population. Next study was conducted to investigate the effect of the SNP in avUCP gene on economic traits in the KNC population. The TT genotype had a significant higher daily percent lay(84.61) than CC genotype(p<0.05) in KNC population. This study may be useful for genetic studies of avCUP gene and selection on daily percent lay of KNC.

Association of a Single Nucleotide Polymorphism with Economic Traits in Porcine Uncoupling Protein 3 Gene (돼지의 UCP3 유전자의 단일염기서열 변이와 경제형질과의 연관성 분석)

  • Oh, Jae-Don;Lee, Kun-Woo;Jung, Il-Jung;Jeon, Gwang-Joo;Lee, Hak-Kyo;Kong, Hong-Sik
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.155-158
    • /
    • 2011
  • Uncoupling protein (UCP) 3 has a number of proposed roles in the regulation of fatty acid metabolism. A number of polymorphisms in the human UCP3 gene have been identified, and the correlation with obesity related phenotypes evaluated. The objective of this study was to identify SNP in porcine UCP3 gene and to investigate the effect of the SNP on economic traits. The sequencing analysis method was used to identify nucleotide polymorphisms at position 1405 bp (Genebank accession No : AY739704) in porcine UCP3 gene. The SNP (G150R), located in the exon 3, changed the amino acid to glycine (GGG) from arginine (AGG). This G150R showed three genotypes - GG, GR and RR - by digestion with the restriction enzyme Sma Ⅰ using the PCR-RFLP method. The G150R showed significant effects only on back fat (P<0.05). Animals with the genotype GG had significantly higher back fat thickness (1.358 cm) than animals with the genotype GR (1.288 cm, P<0.05) and RR (1.286 cm, P<0.05). However, the genotypes had no significant association with ADG and days to 90kg. According to results of this study, a G allele of the G150R was found to have a significant effect on back fat thickness. It will be possible to use SNP markers on selected pigs to improve backfat thickness, an important economic trait.

Association between SNP Marker of Uncoupling Protein 3 Gene and Meat Yield and Marbling Score Traits in Korean Cattle

  • Chung, Eui-Ryong;Shin, Sung-Chul;Heo, Jae-Pil
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.530-536
    • /
    • 2011
  • It is well established that uncoupling protein 3 (UCP3) is expressed largely in skeletal muscle, white adipose tissue and brown adipose tissue and has been suggested to play important roles in regulating energy expenditure, body weight, thermoregulation as well as fatty acid metabolism and obesity. Therefore, the UCP3 gene was selected as a candidate gene for carcass and meat quality traits in Korean cattle. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the UCP3 gene and to evaluate the association of UCP3 SNP markers with carcass and meat quality traits in Korean cattle. The five exons in the UCP3 gene were sequenced, and ten SNPs were identified. The PCR-SSCP method was then developed to genotype the individuals examined. The g.3076A>G genotype was significantly associated with marbling score (MS) of Korean cattle. Animals with the AA genotype had a higher MS than those with the AG and GG genotypes. No significant associations of the SNP g.3076A>G were observed for any traits. In conclusion, although SNP g.3076A>G, which showed an association with MS, does not cause amino acid changes, this SNP may be used as a DNA marker to select animals that have higher intramuscular fat content.

Nrf2 induces Ucp1 expression in adipocytes in response to β3-AR stimulation and enhances oxygen consumption in high-fat diet-fed obese mice

  • Chang, Seo-Hyuk;Jang, Jaeyool;Oh, Seungjun;Yoon, Jung-Hoon;Jo, Dong-Gyu;Yun, Ui Jeong;Park, Kye Won
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.419-424
    • /
    • 2021
  • Cold-induced norepinephrine activates β3-adrenergic receptors (β3-AR) to stimulate the kinase cascade and cAMP-response element-binding protein, leading to the induction of thermogenic gene expression including uncoupling protein 1 (Ucp1). Here, we showed that stimulation of the β3-AR by its agonists isoproterenol and CL316,243 in adipocytes increased the expression of Ucp1 and Heme Oxygenase 1 (Hmox1), the principal Nrf2 target gene, suggesting the functional interaction of Nrf2 with β3-AR signaling. The activation of Nrf2 by tert-butylhydroquinone and reactive oxygen species (ROS) production by glucose oxidase induced both Ucp1 and Hmox1 expression. The increased expression of Ucp1 and Hmox1 was significantly reduced in the presence of a Nrf2 chemical inhibitor or in Nrf2-deleted (knockout) adipocytes. Furthermore, Nrf2 directly activated the Ucp1 promoter, and this required DNA regions located at -3.7 and -2.0 kb of the transcription start site. The CL316,243-induced Ucp1 expression in adipocytes and oxygen consumption in obese mice were partly compromised in the absence of Nrf2 expression. These data provide additional insight into the role of Nrf2 in β3-AR-mediated Ucp1 expression and energy expenditure, further highlighting the utility of Nrf2-mediated thermogenic stimulation as a therapeutic approach to diet-induced obesity.

Structural Conservation and Food Habit-related Liver Expression of Uncoupling Protein 2 Gene in Five Major Chinese Carps

  • Liao, Wan-Qin;Liang, Xu-Fang;Wang, Lin;Fang, Ling;Lin, Xiaotao;Bai, Junjie;Jian, Qing
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.346-354
    • /
    • 2006
  • The full-length cDNA of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) uncoupling protein 2 (UCP2) was obtained from liver. The grass carp UCP2 cDNA was determined to be 1152 bp in length with an open reading frame that encodes 310 amino acids. Five introns (Intron 3, 4, 5, 6 and 7) in the translated region, and partial sequence of Intron 2 in the untranslated region of grass carp UCP2 gene were also obtained. Gene structure comparison between grass carp and mammalian (human and mouse) UCP2 gene shows that, the UCP2 gene structure of grass carp is much similar to that of human and mouse. Partial UCP2 cDNA sequences of bighead carp (Aristichthys nobilis) and mud carp (Cirrhinus molitorella), were further determined. Together with the common carp (Cyprinus carpio) UCP2 sequence from GenBank (AJ243486), multiple alignment result shows that the nucleotide and amino acid sequences of the UCP2 gene, were highly conserved among the five major Chinese carps that belong to four subfamilies. Using beta-actin as control, the ratio UCP2/beta-actin mRNA (%) was determined to be $149.4{\pm}15.6$ (common carp), $127.4{\pm}22.1$ (mud carp), $96.7{\pm}12.7$ (silver carp), $94.1{\pm}26.8$ (bighead carp) and $63.7{\pm}16.2$ (grass carp). The relative liver UCP2 expression of the five major Chinese carps, shows a close relationship with their food habit: benthos and detrituseating fish (common carp and mud carp) > planktivorious fish (silver carp and bighead carp) > herbivorious fish (grass carp). We suggest that liver UCP2 might be important for Chinese carps to detoxify cyanotoxins and bacteria in debris and plankton food.

The Effect of A-3826G Polymorphism of Uncoupling Protein-Ion Visceral Fat Area in Overweight Korean Women

  • Kim, Kil-Soo;Cha, Min-Ho;Kim, Jong-Yeol;Shin, Seung-Uoo;Yoon, Yoo-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.279-284
    • /
    • 2005
  • Uncoupling protein-1 (UCP-1) plays a major role in thermogenesis, and has been implicated in the pathogenesis of obesity and metabolic disorders. The aim of this study was to estimate the effects of A-3826G polymorphism of UCP-1 gene on body fat distribution. Two hundred forty eight Korean female overweight subjects with BMI more than 25 kgfm2 participated in this study. The areas of abdominal subcutaneous and visceral fat of all subjects were measured from computed tomography cross sectional pictures of the umbilical region. Subcutaneous fat areas of upper and lower thigh were also measured. Body composition was measured by bio-impedance analysis, and serum concentrations of biochemical parameters, such as glucose, triglyceride, cholesterol etc, were also measured. Genotype of UCP-1 was analyzed by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) method. The frequencies of UCP-1 genotypes were AA type; $27.8\%,\;AG\;type;\;51.2\%\;and\;GG\;type;\;21.0\%,$ and the frequency of G allele was 0.47. Body weight, BMI, WHR, SBP, DBP and body compositions were not significantly different by UCP-1 genotype. Abdominal visceral fat area was significantly higher in AG and GG type compared with AA type (p=0.009), but subcutaneous fat areas were not significantly different by UCP-1 genotype. Among biochemical parameters, LDL cholesterol level was significantly higher in GG type compared with AA and AG types (p=0.033). Among all subjects, 121 subjects finished 1 month weight loss program containing hypocaloric diet and exercise. The reduction of body weight and BMI were lower in GG type compared with AA/AG type even though statistical significances were not found (p > 0.05). These results suggest that UCP-1 genotype has a significant effect on visceral fat accumulation among Korean female overweight subjects with BMI more than $25\;kg/m^2$.

A synonymous mutation of uncoupling protein 2 (UCP2) gene is associated with growth performance, carcass characteristics and meat quality in rabbits

  • Liu, Wen-Chao;Lai, Song-Jia
    • Journal of Animal Science and Technology
    • /
    • v.58 no.1
    • /
    • pp.3.1-3.6
    • /
    • 2016
  • Background: Uncoupling proteins 2 (UCP2) plays an important role in energy regulation, previous studies suggested that UCP2 is an excellent candidate gene for human obesity and growth-related traits in cattle and chicks. The current study was designed to detect the genetic variation of UCP2 gene, and to explore the association between polymorphism of UCP2 gene and growth, carcass and meat quality traits in rabbits. Results: A synonymous mutation in exon 1 and four variants in the first intron of the UCP2 gene were identified by using PCR-sequencing. The synonymous mutation c.72G>A was subsequently genotyped by MassArray system (Sequenom iPLEXassay) in 248 samples from three meat rabbit breeds (94 Ira rabbits, 83 Champagne rabbits, and 71 Tianfu black rabbits). Association analysis suggested that the individuals with AA and AG genotypes showed greater 70 d body weight (P < 0.05), 84 d body weight (P < 0.01), ADG from 28 to 84 days of age (P < 0.05), eviscerated weight (P < 0.01), semi-eviscerated weight (P < 0.01) and semi-eviscerated slaughter percentage (P < 0.05), respectively. Additionally, the individuals with AA and AG genotype had a lower pH value of longissimus muscle (P < 0.01) and hind leg muscle (P < 0.05) after slaughter 24 h. Conclusions: These findings indicated that UCP2 could be a candidate gene that associated with growth performance, body composition and meat quality in rabbits, and this would contribute to advancements in meat rabbit breeding practice.

Polymorphisms in the uncoupling protein 3 gene and their associations with feed efficiency in chickens

  • Jin, Sihua;Yang, Lei;He, Tingting;Fan, Xinfeng;Wang, Yiqiu;Ge, Kai;Geng, Zhaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1401-1406
    • /
    • 2018
  • Objective: The uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily and has crucial effects on growth and feed efficiency in many species. Therefore, the objective of the present study was to examine the association of polymorphisms in the UCP3 gene with feed efficiency in meat-type chickens. Methods: Six single nucleotide polymorphisms (SNPs) of the UCP3 gene were chosen to be genotyped using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in meat-type chicken populations with 724 birds in total. Body weight at 49 (BW49) and 70 days of age (BW70) and feed intake (FI) in the interval were collected, then body weight gain (BWG) and feed conversion ratio (FCR) were calculated individually. Results: One SNP with a low minor allele frequency (<1%) was removed by quality control and data filtering. The results showed that rs13997809 of UCP3 was significantly associated with BWG and FCR (p<0.05), and that rs13997811 had significant effects on BW70 and BWG (p<0.05). Rs13997812 of UCP3 was strongly associated with BW70, FI, and FCR (p<0.05). Furthermore, individuals with AA genotype of rs13997809 had significantly higher BWG and lower FCR (p<0.05) than those with AT genotype. The GG individuals showed strongly higher BW70 and BWG than AA birds in rs13997811 (p<0.05). Birds with the TT genotype of rs13997812 had significantly greater BW70 and lower FCR compared with the CT birds (p<0.05). In addition, the TAC haplotype based on rs13997809, rs13997811, and rs13997812 showed significant effects on BW70, FI, and FCR (p<0.05). Conclusion: Our results therefore demonstrate important roles for UCP3 polymorphisms in growth and feed efficiency that might be used in meat-type chicken breeding programs.