• Title/Summary/Keyword: Unconstrained optimization

Search Result 126, Processing Time 0.021 seconds

Design Optimization of a Pin-Fin Type Heat Sink (핀-휜형 방열판의 설계 최적화)

  • 김형렬;박경우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.860-869
    • /
    • 2003
  • Design optimization of the heat sink with 7${\times}$7 square pin-fins is performed numerically using the Computational Fluid Dynamics (CFD) and the Computer Aided Optimization (CAO). In the pin-fins heat sink, the optimum design variables for fin height (h), fin width (w), and fan-to-heat sink distance (c) can be achieved when the thermal resistance ($\theta$$_{j}$) at the junction and the overall pressure drop ($\Delta$p) are minimized simultaneously. To complete the optimization, the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem are used. The results show that the optimum design variable for the weighting coefficient of 0.5 are as follows: w=4.653 mm, h=59.215 mm, and c=2.667 mm. In this case, the objective functions are predicted as 0.56K/W of thermal resistance and 6.91 Pa of pressure drop. The Pareto optimal solutions are also presented.re also presented.d.

Application of Numerical Optimization Technique to the Design of Fans (송풍기 설계를 위한 수치최적설계기법의 응용)

  • Kim, K.Y.;Choi, J.H.;Kim, T.J.;Rew, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.566-576
    • /
    • 1995
  • A Computational code has been developed in order to design axial fans by the numerical optimization techniques incorporated with flow analysis code solving three-dimensional Navier-Stokes equation. The steepest descent method and the conjugate gradient method are used to look for the search direction in the design space, and the golden section method is used for one-dimensional search. To solve the constrained optimization problem, sequential unconstrained minimization technique, SUMT, is used with imposed quadratic extended interior penalty functions. In the optimization of two-dimensional cascade design, the ratio of drag coefficient to lift coefficient is minimized by the design variables such as maximum thickness, maximum ordinate of camber and chord wise position of maximum ordinate. In the application of this numerical optimization technique to the design of an axial fan, the efficiency is maximized by the design variables related to the sweep angle distributed by quadratic function along the hub to tip of fan.

  • PDF

An Algorithm for Resource-Unconstrained Earliness-Tardiness Problem with Partial Precedences (자원 제약이 없는 환경에서 부분 우선순위를 고려한 Earliness-Tardiness 최적 일정계획 알고리즘)

  • Ha, Byung-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.2
    • /
    • pp.141-157
    • /
    • 2013
  • In this paper, we consider the minimization of the total weighted earliness-tardiness penalty of jobs, regarding the partial precedences between jobs. We present an optimal scheduling algorithm in O(n(n+m log m)) where n is the number of jobs and m is the number of partial precedences. In the algorithm, the optimal schedule is constructed iteratively by considering each group of contiguous jobs as a block that is represented by a tree.

A NONLINEAR CONJUGATE GRADIENT METHOD AND ITS GLOBAL CONVERGENCE ANALYSIS

  • CHU, AJIE;SU, YIXIAO;DU, SHOUQIANG
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.157-165
    • /
    • 2016
  • In this paper, we develop a new hybridization conjugate gradient method for solving the unconstrained optimization problem. Under mild assumptions, we get the sufficient descent property of the given method. The global convergence of the given method is also presented under the Wolfe-type line search and the general Wolfe line search. The numerical results show that the method is also efficient.

SCALING METHODS FOR QUASI-NEWTON METHODS

  • MOGHRABI, ISSAM A.R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.1
    • /
    • pp.91-107
    • /
    • 2002
  • This paper presents two new self-scaling variable-metric algorithms. The first is based on a known two-parameter family of rank-two updating formulae, the second employs an initial scaling of the estimated inverse Hessian which modifies the first self-scaling algorithm. The algorithms are compared with similar published algorithms, notably those due to Oren, Shanno and Phua, Biggs and with BFGS (the best known quasi-Newton method). The best of these new and published algorithms are also modified to employ inexact line searches with marginal effect. The new algorithms are superior, especially as the problem dimension increases.

  • PDF

DESIGN OF SINGLE-SIDED LINEAR INDUCTION MOTOR USING FINITE ELEMENT METHOD AND SUMT (유한요소법과 SUMT를 이용한 편측식 선형유도전동기의 설계)

  • Im, Dal-Ho;Kim, Hak-Ryun;Lee, Cheol-Jik;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.503-505
    • /
    • 1992
  • This paper describes the optimization of design variables of SLIM using finite element method and SUMT(Sequential Unconstrained Minimization Technique). Thrust is taken as an objective function in order to maximize thrust under constant current drive, and seven independent design variables and nine constraints are chosen. As a result, $\tau$/g(pole pitch/airgap) and $\tau$/$d_{AL}$(pole pitch/aluminum depth) of good criteria in SLIM design are determined.

  • PDF

A NEW LIMITED MEMORY QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMIZATION

  • Moghrabi, Issam A.R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • The main concern of this paper is to develop a new class of quasi-newton methods. These methods are intended for use whenever memory space is a major concern and, hence, they are usually referred to as limited memory methods. The methods developed in this work are sensitive to the choice of the memory parameter ${\eta}$ that defines the amount of past information stored within the Hessian (or its inverse) approximation, at each iteration. The results of the numerical experiments made, compared to different choices of these parameters, indicate that these methods improve the performance of limited memory quasi-Newton methods.

  • PDF

ON A SECOND ORDER PARALLEL VARIABLE TRANSFORMATION APPROACH

  • Pang, Li-Ping;Xia, Zun-Quan;Zhang, Li-Wei
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.201-213
    • /
    • 2003
  • In this paper we present a second order PVT (parallel variable transformation) algorithm converging to second order stationary points for minimizing smooth functions, based on the first order PVT algorithm due to Fukushima (1998). The corresponding stopping criterion, descent condition and descent step for the second order PVT algorithm are given.

Optimization of ship inner shell to improve the safety of seagoing transport ship

  • Yu, Yan-Yun;Lin, Yan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.454-467
    • /
    • 2013
  • A practical Ship Inner Shell Optimization Method (SISOM), the purpose of which is to improve the safety of the seagoing transport ship by decreasing the maximum Still Water Bending Moment (SWBM) of the hull girder under all typical loading conditions, is presented in this paper. The objective of SISOM is to make the maximum SWBM minimum, and the section areas of the inner shell are taken as optimization variables. The main requirements of the ship performances, such as cargo hold capacity, propeller and rudder immersion, bridge visibility, damage stability and prevention of pollution etc., are taken as constraints. The penalty function method is used in SISOM to change the above nonlinear constraint problem into an unconstrained one, which is then solved by applying the steepest descent method. After optimization, the optimal section area distribution of the inner shell is obtained, and the shape of inner shell is adjusted according to the optimal section area. SISOM is applied to a product oil tanker and a bulk carrier, and the maximum SWBM of the two ships is significantly decreased by changing the shape of inner shell plate slightly. The two examples prove that SISOM is highly efficient and valuable to engineering practice.

Structural optimal control based on explicit time-domain method

  • Taicong Chen;Houzuo Guo;Cheng Su
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The classical optimal control (COC) method has been widely used for linear quadratic regulator (LQR) problems of structural control. However, the equation of motion of the structure is incorporated into the optimization model as the constraint condition for the LQR problem, which needs to be solved through the Riccati equation under certain assumptions. In this study, an explicit optimal control (EOC) method is proposed based on the explicit time-domain method (ETDM). By use of the explicit formulation of structural responses, the LQR problem with the constraint of equation of motion can be transformed into an unconstrained optimization problem, and therefore the control law can be derived directly without solving the Riccati equation. To further optimize the weighting parameters adopted in the control law using the gradient-based optimization algorithm, the sensitivities of structural responses and control forces with respect to the weighting parameters are derived analytically based on the explicit expressions of dynamic responses of the controlled structure. Two numerical examples are investigated to demonstrate the feasibility of the EOC method and the optimization scheme for weighting parameters involved in the control law.