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A NEW LIMITED MEMORY QUASI-NEWTON METHOD FOR
UNCONSTRAINED OPTIMIZATION

ISSAM A.R. MOGHRABI

ABSTRACT. The main concern of this paper is to develop a new class of quasi-newton
methods. These methods are intended for use whenever memory space is a major
concern and, hence, they are usually referred to as limited memory methods. The
methods developed in this work are sensitive to the choice of the memory parame-
ter i that defines the amount of past information stored within the Hessian (or its
inverse) approximation, at each iteration. The results of the numerical experiments
made, compared to different choices of these parameters, indicate that these methods
improve the performance of limited memory quasi-Newton methods.

1. QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMIZATION

Unconstrained Optimization deals with minimizing a certain objective function with
no constraints on the solution. This type of problems is of the form :

minimize f(z) (where f: R* - R) z &€ R"

(R" is known as the n-dimensional Euclidean space.)

The solution can be found by using a class of methods known as quasi-Newton
method for unconstrained optimization. Quasi-Newton methods require only the func-
tion and its first partial derivatives (gradient) to be available. The Hessian (second
partial derivatives) is not required to be available or even coded. However, an ap-
proximating matrix to the Hessian is used and updated throughout the iterations to
incorporate the changes in the function and its gradient.

Given B;, current approximation to the Hessian, we need to find a new approximating
matrix Bji; to the new Hessian, evaluated at the newly computed iterate ;1. To
determine B;1; we may use the Taylor’s series approximation of first order to the
gradient about the iterate z;,ito obtain a relation of the form (referred to as the
Secant equation):

Bit1s;, =y,
where
S = Ljp1 — Ly
and
Y =%~ % -
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Therefore, the approximations to the Hessian matrix at each iteration must satisfy
the so-called ”Secant Equation”.

Updating formulae used to find the new Hessian approximating matrix B;q using
information from both the old approximation B; and the vectors s; and y;, have the
following form:

B;y1 = B; + C;, where Cj is a correction matrix. Alternatively, it is preferable to
use H; 1 = H; + D;, where D; is a correction matrix and Hip1 = Bi_-|—11'

One particular rank-two formula is the well known BFGS formula. This formula is
given by:

T
BFGS _ Y, ¥; Bis; sl B
Bi+1 =B; + T - T

Y, S s; Bis;

1 1 -
' T 55 Y,

T
BFGszHi+[1+ y! Hi Qz} s8] i y; H +H¢Qi§i.

Numerical results indicate that this formula is superior to other updating formulae
especially when inaccurate (non-exact) line searches are used. BFGS is considered to
be a standard updating formula. [5].

A standard Quasi-Newton Algorithm has the form: [4]

Start with any estimation point z( to the minimum

Start with a symmetric positive-definite matrix Ho (usually Hy = I)
140

Find QO = 2 (:Uo)

Repeat

Step 1. Let pi=—4H; g,

Step 2. Normalize the vector p; [1]

Lt

np, lig
Step 3. Minimize f (gz + agi), where o € R (a > 0) to find a step length ; along

Ifi <nandu p, 112> 1, then p,=

D..

3

Step 4. Tit1 =i+ 05 p,

8 = Lip1 — &4 and Qz = gi+1 - 21

Step 5. If §"f y, >0, and ¢ =0, and n > 10, then

T
5 ¥
Hy=| —1H Shanno and Phua Scaling [1 — 3
(gg oy ) { g [1-3)

Step 6. If §;f y. >0, then

BFGS _ 1. [ v, Hiy;| s sy Hi +Hiy, st
8 Y 5 Y, 5 Y,
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(or any similar updating formula)
Step 7. i <=4 +1 until 1 g; iu< e, {where ¢ € R is a convergence tolerance}.

2. APPLICATION TO LIMITED-MEMORY METHODS

In this section we discuss methods which address the application of Q-N algorithms
when the storage resources are incapable of storing the Hessian approximation matrix
(or its inverse). We briefly discuss an existing method and present a new alternative
for implementing limited-memory methods.

Concentrating on the BFGS updating method 1, we focus attention on the formula
for updating the inverse Hessian approximation at iteration %, given as:

T
(2) Hiy1=H; + (ng gi) {{1 + =5 z} 857 —sirl —r; 87}

=i

where r; = H; ;.
Limited memory methods are derived using the identity

Pit1 = — L1341 i+l
which is equivalent to
T \~1 Y] 7 T T
() pPit1=pi—r1i— (Si yi) {{ |1+ = S| 8 Givl — T Git1 ) Si Tt (Si gi+1) ri }.
; Jt

However, the problem in using 3 lies in computing r; without explicitly storing H;.

The simplest case would be to set H; = I at each iteration and, thus, r; = y;.
However, this is computationally a poor choice since it discards previous information.
Another alternative, we propose here, is to store a form of the vector r; and update it
at each iteration. This can be carried out using the following recurrence :-

we start with ro = Hy yo = yo (since Hy =1)

= Huny
T -1 Yo yoT T T T
= yi+(sp %) { 1+8Ty—0 so y1— (yp 1) ) s0— (5o y1)}
0
and, iteratively, for any ¢, we use

T
1 Y1 Ti-1
re = Hiyi+ (5.1 vi1) {([1 e } sy yi— (ria yi)) Si-1

8,1 Yi—1
T
(4) - (SiAl yz)}

Relation 4 can then be used in 2 to compute the new direction vector. Still, the term
H;_; y; in 2 is not readily available. The obvious alternative is to set, in 2 r;_; to y;_1,
in which case H;_1 y; reduces to y;.

This results in a method which is computationally much better than setting [as in 1]
H; to be the identity matrix, since this means that previously accumulated information
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is not totally abandoned. This suggestion still discards previous information accumu-
lated in r;_; (since H;_) in 2 is set to I ). It may therefore be effective to avoid setting
H;_; to I and we prefer, rather, to approximate the product H;_;y; as will be shown
next. :

Given a diagonal matrix Ho, one constructs

H, = Hy + U (Hg,y0,50) (in our case, U corresponds to the BFGs double rank
correction)

Hy=Hy+U (Ho,yo, 80) +U (Hl,yl,sl) .... etc

Let n be the maximum number of correction matrices U that can be stored. Since
H, is diagonal, this means that the maximum number of n-vectors that can be used to
define the Quasi-Newton matrix is 27 + 1. Once H, is generated we have reached the
storage limit:

Hn =Hy+U (Han()a 30) +..+U (Hn—layr/—hsn—l)

This suggestion is inspired by Nocedal’s method ([6]).Nocedal’s approach is based on
the argument that one should incorporate the most recent information in the update
and one appealing choice is to replace the oldest information. However, there is no
guarantee now that the generated matrices will be positive-definite and/or that the
quadratic termination property 4 will still hold. Losing positive-definiteness results in
search directions that are not descent which threatens the convergence of the method.
This can be avoided by writing the updating formula [concentrating on the BFGS
method] in the form :-

Hiwy = VIHV: + pisisy

where p = (sfyz) and V,=1+4p;y siT.
Thus, applying the strategy suggested above, Nocedal’s method expresses the update
as :- E

For ¢ +1<n,

Hion = VIVE, . Vo Hy.Via Vi
+VI.VT pg so sg Vi Vit .
+VI V5L iy sica sig Vier Vit

T T T
+Vi pi_1 sic1 8i-1 Vit p; si 8

For i+1>mn,

Hiyy = VIVE  Vieg HoViepsr ViclV
VIV s picprn Sicner Siopn Vit o
+VEVE pig sia sia Vi1 Vit
+ViE piy sict sty Vit i sis)
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The matrices generated by these last two relations are positive-definite, if Hp is
positive definite and 3? y; is positive. Also, if the function is quadratic and the vectors
{sx} are conjugate with respect to the Hessian of f, then the Hereditary Property,

Hiyj=s; j=i—1,.,1-7 (i >n),
holds, since

ijj =0, forj=4,1—1,.,1-n+1
and
Vi yp = yp for every j > k.

Returning to our problem, we use Nocedal’s method with a small value of n to
approximate the product H;_; y; in 2. For instance, for n = 1, we have

Hi1yi = Vi HoVicoyi+ ( pi1 81 o Ui) Si—2
= Hoyi — [pi—Q 5;'{2 yi] Ho yi—2
+Pz2—2 [(y;fF—QHo yi—z) (31'T~2 yi) - (y;r—QHO yi) (SzT—Q yi—?) Si—Q]
+ (pi—2 512 ¥i) si-2 -
In general, we use the following recurrence to compute the above product for a
general 7 :
OLET k=i-1;
1. IF k < THEN (incr = 0;bound = k)

ELSE (incr = k — n; bound = 7)

2. Qoound = Yi
3. FOR [ = bound — 1...0
{j=1+1incr;

_ T .
Qp = P5 554141 5
A =q+1 — o Yj ;}

4. 20 = Hyp qo
5. FOR [ =0,1,...,bound — 1;
{j =1+ incr;
B; = p; y;‘pzl;

IF (k > 1) THEN z41 = 2+ s; (u — ;)
ELSE 241 = 2 +sj (cu — )}

Lemma 1. Suppose that the search direction is computed using 3, with r; given by 4.

If the recurrence 4 is applied to a quadratic function with exact line search, then it
possesses the quadratic termination property provided that szTAs]- =0, fori#j, holds.

Proof. We wish to establish (by induction) the Hereditary Property

Hp yj=s;, for 0<j<k.

The property trivially holds for the case k£ = 1. Therefore assume that it holds when
k=1,
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ie, H; yj=sj, forj=0,...0—1

We wish to prove that

Hiy yj=s;, forj=0,..0—-1

To carry out the proof, we need first to establish that

r,{yj:Ofor 0<i<k.
For the case k = 1, we have, using 2, r{ yo=10
Assume that 7{ y; =0 for 0<j <k holds for the case k=1i—1. We now consider

the case k =1 :-
From 2, we have [for j = 0..1 — 2].

yI'ri = ylHi1 wi + sty y; — Bri1y
= Ty +aslyy;— Brii y)
for
1+ le_l Ti—1

o= (T i) 4 [————} T o— 07 1 3}

S;_1 Y1

-1
B=(syyi1) (siiy %)
and using H; y; = s; for j =4 —1,...,4 —n and our inductive hypothesis. It is now
straightforward to prove that r{ yj =0 for 0<j<k.1

Our experiments with the above method seem to favour method 3 for n = 1. For
larger values of 7, Nocedal’s method seems to be preferred. We thus use 3 with =1
in experimenting with the limited-memory version of the BFGS method.

3. NUMERICAL RESULTS AND CONCLUSIONS

The multi-step quasi-Newton methods are tested on 30 different functions having
different dimensions varying from dimension 2 to 100. The functions tested are grouped
into three categories and they are found in 4, 7, 8].

1- Functions of Fixed Low Dimension (2 <n < 15) :
We have tested 14 functions having fixed low dimensions, and these are listed in the
following table

Function Name (dimension)
Rosenbrock (n = 2)

Quadratic function (n = 2)
Freudenstein & Roth{n
Powell Badly Scaled (n
Brown Badly Scaled (n
Beale (n = 2)

Beale (n = 2)

Bard (n = 3)

IR

2)
2)
2)




A NEW LIMITED MEMORY QUASI-NEWTON METHOD 13

Gaussian (n = 3)

Box three-dimensional (n = 3)
Powell Singular (n = 4)

Wood (n = 4)

Biggs EXP6 (n = 6)
Quadratic Function (n = 6)

2 - Function of Fixed Medium Dimension (16 < n < 45):
We have only one fixed medium dimension function, and it is given by

Function Name (dimension)
Sum of Quartics function (n = 25)

3 - Function of Variable Dimension (2 <n < 100) :
We have 15 functions of variable dimension. We have chosen the dimension n to vary
according to following ranges

Low dimension (2 < n < 15)

Medium dimension (16 < n < 45)

Moderate High dimension (46 < n < 80)

High dimension (81 < n < 100)

The names of these functions are listed in the following table

Function Name (dimension)

Watson function (3 < n < 31)

Extended Rosenbrock (2 < n < 100,n even)

Extended Powell (2 < n <100, n divisible by 4)
Penalty function I (2 < n <100)

Variably dimensioned function {2 < n < 100)
Trigonometric function (2 < n < 100)

Modified Trigonometric function (2 <n <100)
Broyden Tridiagonal function (2 < n < 100)

Discrete Boundary value function (2 < n < 100)

Oren and Spedicato Power function (2 < n < 100)
Full Set of Distinct Eigen Values Problem (2 <n < 100)
Tridiagonal function (2 < n < 100)

Wolfe function (2 < n < 100)

Diagonal Rosenbrock’s function (2 < n <100, n even)
Generalized Shallow function (2 < n < 100, n even)

The overall numerical results are given in table 1. The tables reveal the total function
and gradient evaluations for each method, the total number of iterations, the total time
taken by each method, and the number of scores for each method (a score is given to a
function if it has the minimum number of evaluations with ties resolved on the number
of iterations).
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The comparisons between the limited memory BFGS (LM BFGS) method and the
new methods (LM, for different values of 1) are given in table 1. These show clearly
that the LM, (corresponding to n = 1) method is really competitive to both LMBFGS
and the other limited memory methods. LMj, gives the best performance especially
for medium dimension problems.

Table 1 : Overall Results (876 problems)

Method Evaluations Iterations Time (sec.) Scores
LMBFGS | 86401(100.00%) | 73090 (100.00%) | 39171.185 (100.00%) | 128
LM, 76164 (88.15%) | 61335 (83.92%) | 31474.713 (80.35%) | 179
LM, 77364(89.54%) | 61404 (84.01%) | 31547.687 (80.54%) | 132
LM; 92105(106.60%) | 71520 (97.85%) | 37164.552 (94.88%) |98

The new methods have shown their superiority in the numerical experiments com-
pared to the original Nocedal’s limited memory BFGS method. In specific, the new
method LM proves overall that it is numerically superior especially in medium dimen-
sion problems.
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