• Title/Summary/Keyword: Unconstrained Optimization Problem

Search Result 68, Processing Time 0.023 seconds

SCALING METHODS FOR QUASI-NEWTON METHODS

  • MOGHRABI, ISSAM A.R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.1
    • /
    • pp.91-107
    • /
    • 2002
  • This paper presents two new self-scaling variable-metric algorithms. The first is based on a known two-parameter family of rank-two updating formulae, the second employs an initial scaling of the estimated inverse Hessian which modifies the first self-scaling algorithm. The algorithms are compared with similar published algorithms, notably those due to Oren, Shanno and Phua, Biggs and with BFGS (the best known quasi-Newton method). The best of these new and published algorithms are also modified to employ inexact line searches with marginal effect. The new algorithms are superior, especially as the problem dimension increases.

  • PDF

Progressive Quadratic Approximation Method for Effective Constructing the Second-Order Response Surface Models in the Large Scaled System Design (대형 설계 시스템의 효율적 반응표면 근사화를 위한 점진적 이차 근사화 기법)

  • Hong, Gyeong-Jin;Kim, Min-Su;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3040-3052
    • /
    • 2000
  • For effective construction of second-order response surface models, an efficient quad ratic approximation method is proposed in the context of trust region model management strategy. In the proposed method, although only the linear and quadratic terms are uniquely determined using 2n+1 design points, the two-factor interaction terms are mathematically updated by normalized quasi-Newton formula. In order to show the numerical performance of the proposed approximation method, a sequential approximate optimizer is developed and solves a typical unconstrained optimization problem having 2, 6, 10, 15, 30 and 50 design variables, a gear reducer system design problem and two dynamic response optimization problems with multiple objectives, five objectives for one and two objectives for the other. Finally, their optimization results are compared with those of the CCD or the 50% over-determined D-optimal design combined with the same trust region sequential approximate optimizer. These comparisons show that the proposed method gives more efficient than others.

Propeller Skew Optimization Considering Varying Wake Field (선체반류를 고려한 프로펠러 최적 스큐화)

  • 문일성;김건도;유용완;류민철;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.26-35
    • /
    • 2003
  • Propellers operating in a given nonuniform ship wake generate unsteady loads leading to undesirable stern vibration problems. The skew is known to be the most proper and effective geometric parameter to control or reduce the fluctuating forces on the shaft. This paper assumes the skew profile as either a quadratic or a cubic function of the radius and determines the coefficients of the polynomial function by applying the simplex method. The method uses the converted unconstrained algorithm to solve the constrained minimization problem of 6-component shaft excitation forces. The propeller excitation was computed either by applying the two-dimensional gust theory for quick estimation or by the fully three-dimensional unsteady lifting surface theory in time domain for an accurate solution. A sample result demonstrates that the shaft forces can be further reduced through optimization from the original design.

Hybrid Induction Motor Control Using a Genetically Optimized Pseudo-on-line Method

  • Lee, Jong-seok;Jang, Kyung-won;J. F. Peters;Ahn, Tae-chon
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.127-137
    • /
    • 2004
  • This paper introduces a hybrid induction motor control using a genetically optimized pseudo-on-line method. Optimization results from the use of a look-up table based on genetic algorithms to find the global optimum of an unconstrained optimization problem. The approach to induction motor control includes a pseudo-on-line procedure that optimally estimates parameters of a fuzzy PID (FPID) controller. The proposed hybrid genetic fuzzy PID (GFPID) controller is applied to speed control of a 3-phase induction motor and its computer simulation is carried out. Simulation results show that the proposed controller performs better than conventional FPID and PID controllers. The contribution of this paper is the introduction of a high performance hybrid form of induction motor control that makes on-line and real-time control of the drive system possible.

Mass optimization of four bar linkage using genetic algorithms with dual bending and buckling constraints

  • Hassan, M.R.A.;Azid, I.A.;Ramasamy, M.;Kadesan, J.;Seetharamu, K.N.;Kwan, A.S.K.;Arunasalam, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.83-98
    • /
    • 2010
  • In this paper, the mass optimization of four bar linkages is carried out using genetic algorithms (GA) with single and dual constraints. The single constraint of bending stress and the dual constraints of bending and buckling stresses are imposed. From the movement response of the bar linkage mechanism, the analysis of the mechanism is developed using the combination of kinematics, kinetics, and finite element analysis (FEA). A penalty-based transformation technique is used to convert the constrained problem into an unconstrained one. Lastly, a detailed comparison on the effect of single constraint and of dual constraints is presented.

Development of Genetic Algorithms for Efficient Constraints Handling (구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발)

  • Cho, Young-Suk;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT (개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계)

  • Yun, Young Mook;Kang, Moon Myoung;Lee, Mal Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.21-32
    • /
    • 2004
  • In this study, a continuous optimum design model with its application program for plane steel frame structures developed. In the model, the sequential unconstrained minimization technique (SUMT) transforming the nonlinear optimization problem with multidesign variables and constraints into an unconstrained minimization problem and the refined plastic hinge analysis method as one of the most effective second-order inelastic analysis methods for steel frame structures were implemented. The total weight of a steel frame structure was taken as the objective function, and the AISC-LRFD code requirements for the local and member buckling, flexural strength, shear strength, axial strength and size of the cross-sectional shapes of members were used for the derivation of constraint equations. To verify the appropriateness of the present model, the optimum designs of serveral plane steel frame structures subject to vertical and horizontal loads were conducted.

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF

The configuration Optimization of Truss Structure (트러스 구조물의 형상최적화에 관한 연구)

  • Lim, Youn Su;Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.123-134
    • /
    • 2004
  • In this research, a multilevel decomposition technique to enhance the efficiency of the configuration optimization of truss structures was proposed. On the first level, the nonlinear programming problem was formulated considering cross-sectional areas as design variables, weight, or volume as objective function and behavior under multiloading condition as design constraint. Said nonlinear programming problem was transformed into a sequential linear programming problem. which was effective in calculation through the approximation of member forces using behavior space approach. Such approach has proven to be efficient in sensitivity analysis and different form existing shape optimization studies. The modified method of feasible direction (MMFD) was used for the optimization process. On the second level, by treating only shape design variables, the optimum problem was transformed into and unconstrained optimal design problem. A unidirectional search technique was used. As numerical examples, some truss structures were applied to illustrate the applicability. and validity of the formulated algorithm.

Visual Servoing of a Wheeled Mobile Robot with the Obstacle Avoidance based on the Nonlinear Optimization using the Modified Cost Function (수정된 비용함수를 이용한 비선형 최적화 방법 기반의 이동로봇의 장애물 회피 비주얼 서보잉)

  • Kim, Gon-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2498-2504
    • /
    • 2009
  • The fundamental research for the mobile robot navigation using the numerical optimization method is presented. We propose an image-based visual servo navigation algorithm for a wheeled mobile robot utilizing a ceiling mounted camera. For the image-based visual servoing, we define the composite image Jacobian which represents the relationship between the speed of wheels of a mobile robot and the robot's overall speed in the image plane. The rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot in the image plane using the composite image Jacobian. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the cost function with the image error between the goal position and the position of a mobile robot. In order to avoid the obstacle, the modified cost function is proposed which is composed of the image error between the position of a mobile robot and the goal position and the distance between the position of a mobile robot and the position of the obstacle. The performance was evaluated using the simulation.