Visual Servoing of a Wheeled Mobile Robot with the Obstacle Avoidance based on the Nonlinear Optimization using the Modified Cost Function

수정된 비용함수를 이용한 비선형 최적화 방법 기반의 이동로봇의 장애물 회피 비주얼 서보잉

  • 김곤우 (원광대학교 전자및제어공학부)
  • Published : 2009.12.01

Abstract

The fundamental research for the mobile robot navigation using the numerical optimization method is presented. We propose an image-based visual servo navigation algorithm for a wheeled mobile robot utilizing a ceiling mounted camera. For the image-based visual servoing, we define the composite image Jacobian which represents the relationship between the speed of wheels of a mobile robot and the robot's overall speed in the image plane. The rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot in the image plane using the composite image Jacobian. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the cost function with the image error between the goal position and the position of a mobile robot. In order to avoid the obstacle, the modified cost function is proposed which is composed of the image error between the position of a mobile robot and the goal position and the distance between the position of a mobile robot and the position of the obstacle. The performance was evaluated using the simulation.

Keywords

References

  1. G. W. Kim, and B. H. Lee, 'Target Tracking using the Efficient Estimation of the Image Jacobian with Large Residual,' ROBOTICA, vol. 24, 2006, pp. 325-327 https://doi.org/10.1017/S0263574705002201
  2. J. A. Piepmeier, G. V. McMurray, A. Pfeiffer, and H. Lipkin, 'Uncalibrated target tracking with obstacle avoidance,' IEEE Int'l Conf. Robotics and Automation, 2000, pp. 1670-1675 https://doi.org/10.1109/ROBOT.2000.844836
  3. F. Conticelli, B. Allotta, and P. K. Khosla, 'Image-Based Visual Servoing of Nonholonomic Mobile Robots,' Int'l Conf. Decision and Control, 1999, pp. 3496-3501 https://doi.org/10.1109/CDC.1999.827879
  4. H. Y. Wand, S. Itani, T. Fukao, and N. Adachi, 'Image-Based Visual Adaptive Tracking Control of Nonholonomic Mobile Robots,' Int'l Conf. Intelligent Robots and Systems, 2001, pp. 1-6 https://doi.org/10.1109/IROS.2001.973327
  5. K. Hashimoto, and T. Noritsugu, 'Visual Servoing of Nonholonomic Cart,' Int'l Conf. Robotics and Automation, 1997, pp. 1719-1724 https://doi.org/10.1109/ROBOT.1997.614394
  6. Y. Ma, J. Kosecka, and S. Sastry, 'Vision Guided Navigation for a Nonholonomic Mobile Robot,' IEEE Trans. Robotics and Automation, vol. 15, no. 3, 1999, pp. 521-536 https://doi.org/10.1109/70.768184
  7. H. Zhang, and J. P. Ostrowski, 'Visual Motion Planning for Mobile Robots,' IEEE Trans. Robotics and Automation, vol. 18, no. 2, Apr. 2002, pp. 199-208 https://doi.org/10.1109/TRA.2002.999648
  8. M. Defoort, J. Palos, A. Kokosy, T. Floquet, W. Perruquetti, and D. Boulinguez, 'Experimental Motion Planning and Control for an Autonomous Nonholonomic Mobile Robot,' IEEE Int'l Conf. Robotics and Automation, 2007, pp. 2221-2226 https://doi.org/10.1109/ROBOT.2007.363650
  9. N. Ohnishi and A. Imiya, 'Corridor Navigation and Obstacle Avoidance using Visual Potential for Mobile Robot,' Fourth Canadian Conference on Computer and Robot Vision, 2007, pp. 131-138 https://doi.org/10.1109/CRV.2007.21
  10. S. M. Han and K. W. Lee, 'Mobile Robot Navigation using Circular Path Planning Algorithm,' Int'l Conf. Control, Automation and Systems 2008, 2008, pp. 2082-2086 https://doi.org/10.1109/ICCAS.2008.4694436
  11. J. Chen, W. E. Dixon, D. M. Dawson, and M. McIntyre, 'Homography-Based Visual Servo Tracking Control of a Wheeled Mobile Robot,' IEEE Trans. Robotics, vol. 22, no. 2, 2006, pp. 407-416 https://doi.org/10.1109/TRO.2006.862476
  12. G. W. Kim, K. T. Nam, S. M. Lee, and W. H. Shon, 'Visual Servo Navigation of a Mobile Robot using Nonlinear Least Squares Optimization for Large Residual,' J. Korea Robotics Society, vol. 2, no. 4, 2007, pp. 326-332
  13. W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, 'Adaptive Tracking Control of a Wheeled Mobile Robot via an Uncalibrated Camera System,' IEEE Tras. Systems, Man, amd Cybernetics, vol. 31, no. 3, June, 2001, pp. 341-352 https://doi.org/10.1109/3477.931519