• 제목/요약/키워드: Unconfined strength

검색결과 573건 처리시간 0.031초

Compressive strength characteristics of cement treated sand prepared by static compaction method

  • Yilmaz, Yuksel;Cetin, Bora;Kahnemouei, Vahid Barzegari
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.935-948
    • /
    • 2017
  • An experimental program was conducted to investigate the effects of the static compaction pressure, cement content, water/cement ratio, and curing time on unconfined compressive strength (UCS) of the cement treated sand. UCS were conducted on samples prepared with 4 different cement/sand ratios and were compacted under the lowest and highest static pressures (8 MPa and 40 MPa). Each sample was cured for 7 and 28 days to observe the impact of curing time on UCS of cement treated samples. Results of the study showed the unconfined compressive strength of sand increased as the cement content (5% to 10%) of the cement-sand mixture and compaction pressure (8 MPa to 40 MPa) increased. UCS of sand soil increased 30% to 800% when cement content was increased from 2.5% to 10%. Impact of compaction pressure on UCS decreased with a reduction in cement contents. On the other hand, it was observed that as the water content the cement-sand mixture increased, the unconfined compressive strength showed tendency to decrease regardless of compaction pressure and cement content. When the curing time was extended from 7 days to 28 days, the unconfined compressive strengths of almost all the samples increased approximately by 2 or 3 times.

Predicting the unconfined compressive strength of granite using only two non-destructive test indexes

  • Armaghani, Danial J.;Mamou, Anna;Maraveas, Chrysanthos;Roussis, Panayiotis C.;Siorikis, Vassilis G.;Skentou, Athanasia D.;Asteris, Panagiotis G.
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.317-330
    • /
    • 2021
  • This paper reports the results of advanced data analysis involving artificial neural networks for the prediction of the unconfined compressive strength of granite using only two non-destructive test indexes. A data-independent site-independent unbiased database comprising 182 datasets from non-destructive tests reported in the literature was compiled and used to train and develop artificial neural networks for the prediction of the unconfined compressive strength of granite. The results show that the optimum artificial network developed in this research predicts the unconfined compressive strength of weak to very strong granites (20.3-198.15 MPa) with less than ±20% deviation from the experimental data for 70% of the specimen and significantly outperforms a number of available models available in the literature. The results also raise interesting questions with regards to the suitability of the Pearson correlation coefficient in assessing the prediction accuracy of models.

경량콘크리트를 사용한 충전용 재료의 공학적 특성 (Engineering Characteristics of Filling Materials using Lightweight Foamed Concrete)

  • 도종남;강형남;서두원;천병식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.519-523
    • /
    • 2009
  • In this study, the base mixing ratio was determinated to estimate the optimal mixing ratio of material with a change of mixing ratio of micro cement, sand, foaming agent, plasticizer by testing the unconfined compressive strength test. The unconfined compressive strength test was performed to grasp a engineering characteristics of with a change of micro cement, bubble. The results of test, the unconfined compressive strength increased with a micro cement's increase and bubble's decrease. In the future, it will be secured that is reliable datas from laboratory of various condition and in-situ tests to develop optimal lightweight foamed concrete.

  • PDF

Effect of microorganism on engineering properties of cohesive soils

  • Yasodian, Sheela Evangeline;Dutta, Rakesh Kumar;Mathew, Lea;Anima, T.M.;Seena, S.B.
    • Geomechanics and Engineering
    • /
    • 제4권2호
    • /
    • pp.135-150
    • /
    • 2012
  • This paper presents the study of the effect of microorganism Bacillus pasteurii on the properties such as Atterbergs' limit and unconfined compressive strength of cohesive soils. The results of this study reveal that the liquid limit and plasticity index for all clay soils decreased and the unconfined compressive strength increased. Decrease in plasticity index is very high for Kuttanad clay followed by bentonite and laterite. The unconfined compressive strength increased for all the soils. The increase was high for Kuttanad soil and low for laterite soil. After 24 h of treatment the improvement in the soil properties is comparatively less. Besides the specific bacteria selected Bacillus pasteurii, other microorganisms may also be taking part in calcite precipitation thereby causing soil cementation. But the naturally present microorganisms alone cannot work on the calcite precipitation.

제지애쉬가 적용된 CLSM의 일축압축강도 특성에 관한 연구 (A Study on Unconfined Compressive Strength of CLSM with Paper Sludge Ash)

  • 박정준;이인환;신은철;홍기권
    • 한국지반신소재학회논문집
    • /
    • 제18권4호
    • /
    • pp.253-262
    • /
    • 2019
  • 본 연구에서는 하수관 손상을 예방할 수 있는 CLSM을 개발하기 위하여, 산업폐기물인 제지애쉬를 이용한 CLSM의 일축압축강도 특성을 평가하였다. 이를 위해, 각각의 CLSM 배합조건에 따른 유동성시험 및 일축압축강도시험을 수행하였다. 먼저, 유동성시험 결과, 배합조건에 따라 유동성 기준을 만족하는 함수비의 범위는 24%~32%인 것으로 나타났다. 일축압축강도시험 결과, 강도는 재령일 1일에서 7일 사이에 높은 강도증가율을 보였으며, 이때 강도의 크기는 재령일 28일을 기준으로 발현된 전체 강도의 약 50% 이상인 것으로 확인되었다. 그리고 CLSM의 강도 증가는 플라이애쉬의 영향을 크게 받는 것으로 나타났지만, 개발하고자 하는 CLSM의 기준강도를 고려하면 제지애쉬의 배합이 요구되는 것으로 분석되었다. 또한 높은 시멘트 비율을 적용한 경우의 강도가 낮은 경우에 비하여 크게 발현되었지만, 기준강도를 고려하면 시멘트의 비율을 5%로 적용하는 것이 합리적인 배합조건이라고 판단되었다.

고결모래의 강도정수 평가 (Evaluation of Strength Parameters of Cemented Sand)

  • 이문주;최성근;이우진
    • 한국지반공학회논문집
    • /
    • 제24권11호
    • /
    • pp.91-100
    • /
    • 2008
  • 본 연구에서는 Mohr-Coulomb 파괴기준에 따라 고결모래의 전단강도를 유도하고, 삼축 및 일축압축시험으로 검증하였다. 모래의 마찰각은 고결의 영향을 받지 않으며, 일정구속압 이하에서 고결모래의 점착력은 고결정도에 따라 일정하다. 따라서 고결모래의 전단강도는 미고결 모래의 전단강도와 고결모래의 일축압축강도의 합으로 표현되며, 고결모래의 점착력은 마찰각과 일축압축강도의 함수로 표현되었다. 또한 고결결합 파괴구속압 이후인 전이구간에서 고결모래의 전단강도는 비교적 일정하게 유지된다고 가정하여 전이구간에서 고결모래의 전단강도와 점착력을 유도하였다. 추정된 고결모래의 전단강도와 점착력은 실험결과와 잘 일치하였다. 실험 결과는 또한 고결모래의 점착력 변화에 큰 영향을 미치는 고결결합 파괴구속압이 일축압축강도와 선형비례관계임을 보여준다.

Strength Characteristics of Stabilized Dredged soil and Correlation with Index Properties

  • 김윤태;도탕하이;강효섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.489-494
    • /
    • 2010
  • A geo-composite soil (GCS) is a stabilized mixture of bottom ash, cement and dredged soil. Various samples with different mass ratios of mixtures were tested under curing time of 7 and 28 days to investigate physical properties and compressive strength. This paper focused on the effect of bottom ash on the strength characteristics of Busan marine dredged soil. Cement has been added as an additive constituent to enhance self-hardening of the blended mixture. The unconfined compressive strength of GCS increases with an increase in curing time due to pozzolanic reaction of the bottom ash. The strength after 28 days of curing is found to be approximately 1.3 to 2.0 times the strength after 7 days of curing, regardless of mixture conditions. The secant modulus of GCS is in the range of 55 to 134 times the unconfined compressive strength. The correlation of unconfined compressive strength with bottom ash content and initial void ratio are suggested.

  • PDF

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

Maximum concrete stress developed in unconfined flexural RC members

  • Ho, J.C.M.;Pam, H.J.;Peng, J.;Wong, Y.L.
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.207-227
    • /
    • 2011
  • In flexural strength design of unconfined reinforced concrete (RC) members, the concrete compressive stress-strain curve is scaled down from the uni-axial stress-strain curve such that the maximum concrete stress adopted in design is less than the uni-axial strength to account for the strain gradient effect. It has been found that the use of this smaller maximum concrete stress will underestimate the flexural strength of unconfined RC members although the safety factors for materials are taken as unity. Herein, in order to investigate the effect of strain gradient on the maximum concrete stress that can be developed in unconfined flexural RC members, several pairs of plain concrete (PC) and RC inverted T-shaped specimens were fabricated and tested under concentric and eccentric loads. From the test results, the maximum concrete stress developed in the eccentric specimens under strain gradient is determined by the modified concrete stress-strain curve obtained from the counterpart concentric specimens based on axial load and moment equilibriums. Based on that, a pair of equivalent rectangular concrete stress block parameters for the purpose of flexural strength design of unconfined RC members is determined.

Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests

  • Azadegan, Omid;Li, Jie;Jafari, S. Hadi
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.247-261
    • /
    • 2014
  • Analytical and numerical modeling of soft or problematic soils stabilized with lime and cement require a number of soil parameters which are usually obtained from expensive and time-consuming laboratory experiments. The high shear strength of lime and cement stabilized soils make it extremely difficult to obtain high quality laboratory data in some cases. In this study, an alternative method is proposed, which uses the unconfined compressive strength and estimating functions available in literature to evaluate the shear strength parameters of the treated materials. The estimated properties were applied in finite element model to determine which estimating function is more appropriate for lime and cement treated granular soils. The results show that at the mid-range strength of the stabilized soils, most of applied functions have a good compatibility with laboratory conditions. However, application of some functions at lower or higher strengths would lead to underestimation or overestimation of the unconfined compressive strength.