• Title/Summary/Keyword: Unconfined compression

Search Result 281, Processing Time 0.019 seconds

Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil (지오그리드 혼합 보강경량토의 강도특성 연구)

  • Kim, Yun-Tae;Kwon, Yong-Kyu;Kim, Hong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.383-393
    • /
    • 2006
  • This paper investigates strength characteristics and stress-strain behaviors of geogrid mixing reinforced lightweight soil. The lightweight soil was reinforced with geogrid in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions including cement content, initial water content, air content and geogrid layer and then unconfined compression tests were carried out. From the experimental results, it was found that unconfined compressive strength as well as stress-strain behavior of lightweight soil were strongly influenced by mixing conditions. The more cement content that is added to the mixture, the greater its unconfined compressive strength. However, the more initial water content or the more air foam content, the less its unconfined compressive strength. It was observed that the strength of geogrid reinforced lightweight soil was increased due to reinforcing effect by the geogrid for most cases except cement content less than 20%. In reinforced lightweight soil, secant modulus $(E_{50})$ was increased as the strength increased due to the inclusion of geogrid.

  • PDF

A Study of Cold Room Experiments for Strength Properties of Frozen Soil (Cold Room 실험을 통한 동결토의 강도특성 연구)

  • Seo, Young-Kyo;Kang, Hyo-Sub;Kim, Eun-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2008
  • Recently many countries have become interested in the development of cold or arctic regions. The construction of engineered structures in those regions demands an understanding of the deformation characteristics of frozen soil. However, an understanding of frozen soil behavior poses difficult problems owing to the complex interaction between the soil particles and the ice matrix. In this research, a series of laboratory tests was performed to investigate the variations in the unconfined compression strength and split tensile strength of weathered granite soil and mixed soil (standard sand and kaolinite) in 15 degrees below zero environments. In the frozen soil tests, specimens were prepared with various water and clay contents, and then the interrelationships between four factors (water content, clay content, unconfined compression strength, split tensile strength) were analyzed. The test results were summarized as follows; as the water content was increased, the unconfined compressive and split tensile strengths also increased in frozen soil. However as the clay content was increased, the unconfined compressive and split tensile strengths were lowered. In the case of frozen soil that contained little clay content, the strength decreased rapidly in mixed soil (standard sand and kaolinite) when the frozen specimen was broken. On the other hand, in the cases of mixed soil that contained a high clay content and weathered granite soil, the strength decreased relatively slowly.

Geotechnical Properties of Soil-Bentonite Mixtures (흙-벤토나이트 혼합물의 지반공학적 특성)

  • 채교익;권무남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.132-144
    • /
    • 2001
  • Iln order to figure out criteria of bentonite for using as impervious material of waste landfill, laboratory experiments were performed to reveal the geotechnical properties of soil-bentonite mixtures such as compaction test, direct shear test, unconfined compression test, triaxial compression test, consolidation test and permeability test. The results of the study are summarized as follows ; 1. Based on the compaction test, optimum moisture content increased with the increase of bentonite content, but maximum dry density decreased. 2. In unconfined compression test, the maximum strength of the soil-bentonite mixtures appeared at 10% bentonite content. The correlation equation between stress($\sigma$) and strain($\varepsilon$) of the soil-bentonite mixtures is given by ; $\sigma=\frac{a\cdot\varepsilon}{\varepsilon^n+b}$ 3. In shear test of the mixtures. the shear strength showed an increasing trend with increase of bentonite content and the maximum shear strength appeared at 10% bentonite content. 4. In consolidation test, the coefficient of compressibility $(a_v)$$(m_v)$$(C_v)$

  • PDF

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics (저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.

Effect of cement stabilization on geotechnical properties of sandy soils

  • Shooshpasha, Issa;Shirvani, Reza Alijani
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.17-31
    • /
    • 2015
  • An experimental program was performed to study the effects of cement stabilization on the geotechnical characteristics of sandy soils. Stabilizing agent included lime Portland cement, and was added in percentages of 2.5, 5 and 7.5% by dry weight of the soils. An analysis of the mechanical behavior of the soil is performed from the interpretation of results from unconfined compression tests and direct shear tests. Cylindrical and cube samples were prepared at optimum moisture content and maximum dry unit weight for unconfined compression and direct shear tests, respectively. Samples were cured for 7, 14 and 28 days after which they were tested. Based on the experimental investigations, the utilization of cemented specimens increased strength parameters, reduced displacement at failure, and changed soil behavior to a noticeable brittle behavior.

Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black

  • Chhun, Kean Thai;Choo, Hyunwook;Kaothon, Panyabot;Yune, Chan-Young
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Soil-cement stabilization is a type of ground improvement method which has been used to improve the engineering properties of soil. The unconfined compression test is the commonly used method to evaluate the quality of the stabilized soil due to its simplicity, reliability, rapidity and cost-effectiveness. The main objective of this study was to evaluate the effect of recovered carbon black (rCB) on the strength characteristic of cement-stabilized sand. Various rCB contents and water to cement ratios (w/c) were examined. The unconfined compression test on stabilized sand with different curing times was also conducted for a reconstituted specimen. From the test result, it was found that the compressive strength of cement-stabilized sand increased with the increase of the rCB content up to 3% and the curing time and with the decrease of the w/c ratio, showing that the optimum rCB concentration of the tested stabilized sand was around 3%. In addition, a prediction equation was suggested in this study for cement-stabilized sand with rCB as a function of the w/c ratio and rCB concentration at 14 and 28 days of curing.

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

The Electrical Properties and Unconfined Compression Strength of Bottom Ash (Bottom Ash의 전기적 특성과 일축압축강도)

  • Kim, Tae-Wan;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • The objective of this study is to find the electrical properties of Bottom ash from thermoelectric power plants in Korea. By using Parallel Plate Method, the electrical resistivity and dielectric constant were measured at the frequency from 20 Hz to 10 MHz. Also, unconfined strength test, XRF and sieve analysis were performed for finding the relationship between strength, physiochemical properties and electrical properties. In the result, the change of electrical resistivity and dielectric constant of bottom ash against frequency was similar to that of general soil. The proportion of fine grain in bottom ash had the positive correlation with dielectric constant and negative correlation with electrical resistivity. Chloride and sulfur trioxide were proportional to dielectric constant and the more bottom ash had chloride content, the lower electrical resistivity appeared in bottom ash. Unconfined strength of bottom ashes had a range from 200 kPa to 780 kPa and strength was inverse proportional to electrical resistivity.

The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand

  • Arasan, Seracettin;Nasirpur, Omid
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.361-375
    • /
    • 2015
  • Constructions over soft and loose soils are one of the most frequent problems in many parts of the world. Cement and cement-lime mixture have been widely used for decades to improve the strength of these soils with the deep soil mixing method. In this study, to investigate the freeze-thaw effect of sand improved by polymers (i.e., styrene-acrylic-copolymer-SACP, polyvinyl acetate-PVAc and xanthan gum) and fly ash, unconfined compression tests were performed on specimens which were exposed to freeze-thaw cycles and on specimens which were not exposed to freeze-thaw cycles. The laboratory test results concluded that the unconfined compressive strength increased with the increase of polymer ratio and curing time, whereas, the changes on unconfined compressive strength with increase of freeze-thaw cycles were insignificant. The overall evaluation of results has revealed that polymers containing fly ash is a good promise and potential as a candidate for deep soil mixing application.

Strength Characteristics of Solidified Soil with Hardening Agents made of Industrial By-Products (산업부산물을 이용한 지반고화제 혼합토의 강도특성)

  • Kim, Youngsang;Yu, Geunmo;Mun, Kyoungju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • In this study, geotechnical tests including unconfined compression test were carried out to evaluate the ground improvement effect of the hardening agent, which has been developed by using inter-chemical reactions between slag, fly ash, phosphogypsum and bypass dust on the weathered granite soil and dredged marine clay. Test results show that the strength of weathered granite soil mixed with hardening agent B-2, which uses phosphogypsum as an activator, is higher than that of B-1, which uses bypass dust as an activator. Strengths of B-1 & B-2 hardening agent mixed soil show only 44%~60% of strength of OPC(Ordinary Portland Cement, OPC) mixed soil. However, since B-1 and B-2 agents are made of industrial by-products, they seem economically more effective than ordinary portland cement as well as other present hardening agents. Test results on dredged marine clay show that unconfined compression strength increases with amount of agent and curing days. Unconfined compression strength of 14% B-1 agent mixed soil increases linearly with curing days and reaches only 40% of OPC mixed soil. While unconfined compression strength of 14% B-2 agent mixed soil increases exponentially and reaches 133% of OPC mixed soil. Relationship between deformation modulus and unconfined compression strength of B-1 and B-2 mixed soil can be expressed as $E_{50}=(20{\sim}47)_{qu,28}$, which is similar with lower limit of OPC mixed dredged marine clay.