• Title/Summary/Keyword: Unconfined Compressive strength

Search Result 417, Processing Time 0.032 seconds

Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber

  • Gullu, Hamza;Fedakar, Halil I.
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • In recent years, the amount of sludge ash (SA) has considerably increased due to rapid urbanization and population growth. In addition, its storage in landfills induces environmental pollution and health problems. Therefore, its disposal in an environmentally friendly way has become more important. The main goal of this study is to investigate the reusability of sludge ash as an additive with polypropylene fiber (PF) to stabilize marginal sand based on the compressive strength performances from UCS tests. For this purpose, a series of UCS tests was conducted. Throughout the experimental study, the used inclusion rates were 10, 15, 20 and 30% for sludge ash and 0, 0.5 and 1% for polypropylene fiber by total dry weight of the sand+sludge ash mixture and the prepared samples were cured for 7 and 14 days prior to the testing. Freezing and thawing resistance of the mixture including 10% sludge ash and 0, 0.5 and 1% polypropylene fiber was also examined. On the basis of UCS testing results, it is said that sludge ash inclusion remarkably enhances UCS performance of sand. Moreover, the addition of polypropylene fiber to the admixtures including sand and sludge ash significantly improves their stress-strain characteristics and post-peak strength loss as well as UCS. As a result of this paper, it is suggested that sludge ash be successfully reused with polypropylene fiber for stabilizing sand in soil stabilization applications. It is also believed that the findings of this study will contribute to some environmental concerns such as the disposal problem of sludge ash, recycling, sustainability, environmental pollution, etc. as well as the cost of an engineering project.

Experimental Study on Evaluating Early-age Strength and Stiffness Characteristics of Controlled Low Strength Material (유동성 채움재의 조기 강도 및 강성 특성 평가를 위한 실험적 연구)

  • Son, Dong Geon;Jeong, In Up;Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.133-140
    • /
    • 2021
  • There are few attempts to estimate the strength and stiffness of controlled low strength material (CLSM) using existing field-testing methods. The objective of this study is to evaluate the resilient modulus of CLSM by using the Light Weight Deflectometer (LWD) and investigate the relationships between the resilient modulus from LWD and the unconfined compressive strength (UCS) and secant modulus of elasticity from unconfined compressive test. Five CLSMs with different mix designs are used to evaluate the flowability and the stiffening of the CLSM in the flow and Vicat needle tests, respectively. To evaluate the early strength and stiffness characteristics, unconfined compressive tests are performed using the CLSM specimens cured for 1 and 7 days. LWD tests are carried out to estimate the resilient modulus of the CLSM specimens. The experimental results show that for the curing time of 1 day, the UCS and secant modulus of elasticity generally increase with the fast setting mortar content (FC). The CLSM specimen with the highest FC shows the significant increase in the UCS and secant modulus of elasticity along the curing time. Overall, the resilient modulus for the curing time of 1 day increases with the FC, while that for the curing time of 7days decreases with an increase in the FC. From the results, the linear relationships between the resilient modulus and UCS and secant modulus of elasticity are established.

Mechanism of Consolidation Displacement on Internal Behavior of Clay Ground Improved by Sand Drain (샌드 드레인으로 개량된 점토지반의 내부거동에 대한 압밀변형 메커니즘)

  • Baek, Won-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.69-77
    • /
    • 2006
  • In this study, the large scaled model test improved by sand drain was carried out to clarify the internal behavior of the three-dimensional consolidation under different secondary consolidation periods. From the results of model test, the void ratio in the undrained side was lager than in the drained side. In addition, the unconfined compressive strength in the long-term consolidated specimen was larger than that in the short-term consolidated one. It was also found that the unconfined compressive strength was larger in the drained side than in the undrained side. These reasons are considered to be due to the large effective stress by quick pore water pressure dissipation by the short drainage distance in the drained side. Furthermore, in order to investigate the three-dimensional consolidation behavior of clay ground improved by the vertical drain method, the numerical analysis obtained from the three-dimensional elasto-viscous consolidation theory proposed by author (2006) were compared with the test results. It was found that during the three-dimensional consolidation process not only vertical displacement but also radial displacement occurs inside the specimen.

Soil modification by addition of cactus mucilage

  • Akinwumi, Isaac I.;Ukegbu, Ikenna
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.649-661
    • /
    • 2015
  • This research provides insight on the laboratory investigation of the engineering properties of a lateritic soil modified with the mucilage of Opuntia ficus-indica cladodes (MOFIC), which has a history of being used as an earthen plaster. The soil is classified, according to AASHTO classification system, as A-2-6(1). The Atterberg limits, compaction, permeability, California bearing ratio (CBR) and unconfined compressive strength of the soil were determined for each of 0, 4, 8 and 12% addition of the MOFIC, by dry weight of the soil. The plasticity index, optimum moisture content, swell potential, unconfined compressive strength and permeability decreased while the soaked and unsoaked CBR increased, with increasing MOFIC contents. The engineering properties of the natural soil, which only satisfies standard requirements for use as subgrade material, became improved by the application of MOFIC such that it meets the standard requirements for use as sub-base material for road construction. The effects of MOFIC on the engineering properties of the soil resulted from bioclogging and biocementation processes. MOFIC is recommended for use as a modifier of the engineering properties of soils, especially those with similar characteristics to that of the soil used in this study, to be used as a pavement layer material. It is more economical and environment-friendly than conventional soil stabilizers or modifiers.

Effect of slag on stabilization of sewage sludge and organic soil

  • Kaya, Zulkuf
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.689-707
    • /
    • 2016
  • Soil stabilization is one of the useful method of ground improvement for soil with low bearing capacity and high settlement and unrequired swelling potential. Generally, the stabilization is carried out by adding some solid materials. The main objective of this research was to investigate the feasibility of stabilization of organic soils and sewage sludge to obtain low cost alternative embankment material by the addition of two different slags. Slags were used as a replacement for weak soil at ratios of 0%, 25%, 50%, 75% and 100%, where sewage sludge and organic soil were blended with slags separately. The maximum dry unit weights and the optimum water contents for all soil mixtures were determined. In order to investigate the influence of the slags on the strength of sewage sludge and organic soil, and to obtain the optimal mix design; compaction tests, the California bearing ratio (CBR) test, unconfined compressive strength (UCS) test, hydraulic conductivity test (HCT) and pH tests were carried out on slag-soil specimens. Unconfined compressive tests were performed on non-cured samples and those cured at 7 days. The test results obtained from untreated specimens were compared to tests results obtained from soil samples treated with slag. Laboratory tests results indicated that blending slags with organic soil or sewage sludge improved the engineering properties of organic or sewage sludge. Therefore, it is concluded that slag can be potentially used as a stabilizer to improve the properties of organic soils and sewage sludge.

Study on engineering properties of xanthan gum reinforced kaolinite

  • Zhanbo Cheng;Xueyu Geng
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.501-511
    • /
    • 2023
  • The strengthening efficiency of biopolymer treated soil depends on biopolymer type, concentration ratio, soil type, initial water content, curing time and mixing method. In this study, the physical and mechanical properties of xanthan gum (XG) treated kaolinite were investigated through compaction test, Atterberg limit test, triaxial test and unconfined compression test. The results indicated that the optimum water content (OWC) increased from 30.3% of untreated clay to 33.5% of 5% XG treated clay, while the maximum dry density has a slight increase from 13.96 kg/m3 to 14 kg/m3 of 0.2% XG treated clay and decrease to 2.7 kg/m3 of 5% XG treated clay. Meanwhile, the plastic limit of XG treated clay increased with the increase of XG concentration, while 0.5% XG treated clay can be observed the maximum liquid limit with 79.5%. Moreover, there are the ideal water content about 1.3-1.5 times of the optimum water content achieving the maximum dry density and curing time to obtain the maximum compressive strength for different XG contents, which the UCS is 1.52 and 2.07 times of the maximum UCS of untreated soil for 0.5% and 1% XG treated clay, respectively. In addition, hot-dry mixing can achieve highest UCS than other mixing methods (e.g., dry mixing, wet mixing and hot-wet mixing).

Structural lightweight concrete containing expanded poly-styrene beads; Engineering properties

  • Vakhshouri, Behnam
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.581-597
    • /
    • 2020
  • Light-Weight Concrete containing Expanded Poly-Styrene Beads (EPS-LWC) is an approved structural and non-structural material characterized by a considerably lower density and higher structural efficiency, compared to concrete containing ordinary aggregates. The experimental campaign carried out in this project provides new information on the mechanical properties of structural EPS-LWC, with reference to the strength and tension (by splitting and in bending), the modulus of elasticity, the stress-strain curve in unconfined compression, the absorbed energy under compression and reinforcement-concrete bond. The properties measured at seven ages since casting, from 3 days to 91 days, in order to investigate their in-time evolution. Mathematical relationships are formulated as well, between the previous properties and time, since casting. The dependence of the compressive strength on the other mechanical properties of EPS-LWC is also described through an empirical relationship, which is shown to fit satisfactorily the experimental results.

Stiffness Degradation and Unconfined Strength of the Chemically Grouted Sand Subjected to Cyclic Shear (반복전단을 받는 고화 처리토의 강성저하와 일축압축강도)

  • Kwon, Youngcheul;Lee, Bongjik;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.23-29
    • /
    • 2007
  • The performance of the improved soil against liquefaction depends upon the chemical density, and it has been decided on the basis of the unconfined compressive strength of the improved soil up to date. On the other hand, several authors have proposed that the stiffness degradation could be treated as the clue for the judgment of the possibility of liquefaction. In this study, therefore, the stiffness degradation of the improved soil was estimated as the resistance against liquefaction by using the strain controlled cyclic triaxial test equipment. Based on the test results, it is concluded that the chemically treated sand can resist against the liquefaction in aspect of the reduction in effective stress and in the stiffness. Furthermore, even in the case of low chemical density, such as 2% in this study, has enough liquefaction resistance when compared with the 5~6% which often used in practical design. Considering this fact, the design of chemical density based on the unconfined strength can lead the overestimation in chemical density, and chemical density can be reduced when considering the stiffness reduction shown in this study.

  • PDF

Effect of Biomineralization on the Strength of Cemented Sands (미생물에 의해 생성된 광물질이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Wha-Jung;Lee, Jun-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.75-84
    • /
    • 2011
  • There are some kinds of microorganisms within soils which can precipitate some minerals such as calcite under suitable conditions. Such precipitated calcites within pores of soil may reduce permeability and also cement soil particles. In this study, whether such microorganisms can fill pores within soil and increase the strength is investigated. Basillus pasteurii was repeatedly injected into weakly cemented sand with 3% cement ratio up to 10 times for 20 days. Then, cemented sand injected with microorganisms was tested for an unconfined compressive strength and evaluated for filling voids between soil particles. The unconfined compressive strength of one time injected specimen showed a 5% increase compared to untreated specimen. However, for more than two times the strength of injected specimens gradually decreased up to 50% of the untreated specimen by microorganisms. As the number of microorganism injection increased, the amount of calcite precipitation slightly increased within voids. However, over-precipitated calcites may result in strength decrease of slightly cemented soils.

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.