• 제목/요약/키워드: Uncertainty-quantification

검색결과 172건 처리시간 0.028초

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

토양오염도 평가시 시료채취 불확실성 정량화 및 저감방안 (Quantification of Uncertainty Associated with Soil Sampling and Its Reduction Approaches)

  • 김건하
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.94-101
    • /
    • 2013
  • It is well known that uncertainty associated with soil sampling is bigger than that with analysis. In this research, uncertainties for soil sampling when assessing TPH and BTEX concentration in soils were quantified based on actual field data. It is almost impossible to assess exact contamination of the site regardless how carefully devised for sampling. Uncertainties associated with sample reduction for further chemical analysis were quantified approximately 10 times larger than those associated with core sampling on site. Bigger uncertainties occur when contamination level is low, sample quantity is small, and soil particle is coarse. To minimize the uncertainties on field, homogenization of soil sample is necessary and its procedures are proposed in this research as well.

필터 기반 블랙카본 측정에서의 보정과 불확실성에 대한 고찰 (Corrections and Artifacts Regarding Filter-based Measurements of Black Carbon)

  • 이정훈
    • 한국대기환경학회지
    • /
    • 제34권4호
    • /
    • pp.610-615
    • /
    • 2018
  • A filter-based optical technique is one of the representative ways for the measurement and quantification of black carbon (BC). Since the filter-based technique adopts a simple principle, it is easy to put into practical use and instrumental products have already been commercialized. In this study, however, the absorption coefficients of BC after the correction process was estimated to be approximately 3 times lower than those before the correction process. In addition, the difference between before and after corrections was also evident for the trend of increasing and decreasing absorption coefficient. When BC concentration is low, uncertainty may increase regardless of corrections due to the artifacts of filter. In this sense, techniques without using a filter are required, and uncertainties will be minimized if these techniques are used to further complement the filter-based black carbon measurements. Finally, this study is believed to help understand the uncertainty and correction of filter-based black carbon measurements.

Performing linear regression with responses calculated using Monte Carlo transport codes

  • Price, Dean;Kochunas, Brendan
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1902-1908
    • /
    • 2022
  • In many of the complex systems modeled in the field of nuclear engineering, it is often useful to use linear regression-based analyses to analyze relationships between model parameters and responses of interests. In cases where the response of interest is calculated by a simulation which uses Monte Carlo methods, there will be some uncertainty in the responses. Further, the reduction of this uncertainty increases the time necessary to run each calculation. This paper presents some discussion on how the Monte Carlo error in the response of interest influences the error in computed linear regression coefficients. A mathematical justification is given that shows that when performing linear regression in these scenarios, the error in regression coefficients can be largely independent of the Monte Carlo error in each individual calculation. This condition is only true if the total number of calculations are scaled to have a constant total time, or amount of work, for all calculations. An application with a simple pin cell model is used to demonstrate these observations in a practical problem.

Improving streamflow and flood predictions through computational simulations, machine learning and uncertainty quantification

  • Venkatesh Merwade;Siddharth Saksena;Pin-ChingLi;TaoHuang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.29-29
    • /
    • 2023
  • To mitigate the damaging impacts of floods, accurate prediction of runoff, streamflow and flood inundation is needed. Conventional approach of simulating hydrology and hydraulics using loosely coupled models cannot capture the complex dynamics of surface and sub-surface processes. Additionally, the scarcity of data in ungauged basins and quality of data in gauged basins add uncertainty to model predictions, which need to be quantified. In this presentation, first the role of integrated modeling on creating accurate flood simulations and inundation maps will be presented with specific focus on urban environments. Next, the use of machine learning in producing streamflow predictions will be presented with specific focus on incorporating covariate shift and the application of theory guided machine learning. Finally, a framework to quantify the uncertainty in flood models using Hierarchical Bayesian Modeling Averaging will be presented. Overall, this presentation will highlight that creating accurate information on flood magnitude and extent requires innovation and advancement in different aspects related to hydrologic predictions.

  • PDF

UNCERTAINTY PROPAGATION ANALYSIS FOR YONGGWANG NUCLEAR UNIT 4 BY MCCARD/MASTER CORE ANALYSIS SYSTEM

  • Park, Ho Jin;Lee, Dong Hyuk;Shim, Hyung Jin;Kim, Chang Hyo
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.291-298
    • /
    • 2014
  • This paper concerns estimating uncertainties of the core neutronics design parameters of power reactors by direct sampling method (DSM) calculations based on the two-step McCARD/MASTER design system in which McCARD is used to generate the fuel assembly (FA) homogenized few group constants (FGCs) while MASTER is used to conduct the core neutronics design computation. It presents an extended application of the uncertainty propagation analysis method originally designed for uncertainty quantification of the FA FGCs as a way to produce the covariances between the FGCs of any pair of FAs comprising the core, or the covariance matrix of the FA FGCs required for random sampling of the FA FGCs input sets into direct sampling core calculations by MASTER. For illustrative purposes, the uncertainties of core design parameters such as the effective multiplication factor ($k_{eff}$), normalized FA power densities, power peaking factors, etc. for the beginning of life (BOL) core of Yonggwang nuclear unit 4 (YGN4) at the hot zero power and all rods out are estimated by the McCARD/MASTER-based DSM computations. The results are compared with those from the uncertainty propagation analysis method based on the McCARD-predicted sensitivity coefficients of nuclear design parameters and the cross section covariance data.

확률강우량의 공간분포추정에 있어서 Bayesian 기법을 이용한 공간통계모델의 매개변수 불확실성 해석 (Uncertainty Analysis of Parameters of Spatial Statistical Model Using Bayesian Method for Estimating Spatial Distribution of Probability Rainfall)

  • 서영민;박기범;김성원
    • 한국환경과학회지
    • /
    • 제20권12호
    • /
    • pp.1541-1551
    • /
    • 2011
  • This study applied the Bayesian method for the quantification of the parameter uncertainty of spatial linear mixed model in the estimation of the spatial distribution of probability rainfall. In the application of Bayesian method, the prior sensitivity analysis was implemented by using the priors normally selected in the existing studies which applied the Bayesian method for the puppose of assessing the influence which the selection of the priors of model parameters had on posteriors. As a result, the posteriors of parameters were differently estimated which priors were selected, and then in the case of the prior combination, F-S-E, the sizes of uncertainty intervals were minimum and the modes, means and medians of the posteriors were similar to the estimates using the existing classical methods. From the comparitive analysis between Bayesian and plug-in spatial predictions, we could find that the uncertainty of plug-in prediction could be slightly underestimated than that of Bayesian prediction.

Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation

  • Spiridonakos, Minas D.;Chatzia, Eleni N.
    • Earthquakes and Structures
    • /
    • 제8권4호
    • /
    • pp.915-934
    • /
    • 2015
  • Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.

공동주택 침기의 불확실성 분석 (Infiltration in Residential Buildings under Uncertainty)

  • 현세훈;박철수;문현준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.369-374
    • /
    • 2006
  • Quantification of infiltration rate is an important issue in HVAC system design. The infiltration in buildings depends on many uncertain parameters that vary with significant magnitude and hence, the results from standard deterministic simulation approach can be unreliable. The authors utilize uncertainty analysis In predicting the airflow rates. The paper presents relevant uncertain parameters such as meteorological data, building parameters (leakage areas of windows, doors, etc.), etc. Uncertainties of the aforementioned parameters are quantified based on available data from literature. Then, the Latin Hypercube Sampling (LHS) method was used for the uncertainty propagation. The LHS is one of the Monte Carlo simulation techniques that is suited for our needs. The CONTAMW was chosen to simulate infiltration phenomena in a residential apartment that is typical of residential buildings in Korea. It will be shown that the uncertainty propagating through this process is not negligible and may significantly influence the prediction of the airflow rates.

  • PDF

A Systems Engineering Approach for Uncertainty Analysis of a Station Blackout Scenario

  • de Sousa, J. Ricardo Tavares;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제15권1호
    • /
    • pp.51-59
    • /
    • 2019
  • After Fukushima Dai-ichi NPP accident, the need for implementation of diverse and flexible coping strategies (FLEX) became evident. However, to ensure the effectiveness of the safety strategy, it is essential to quantify the uncertainties associated with the station blackout (SBO) scenario as well as the operator actions. In this paper, a systems engineering approach for uncertainty analysis (UA) of a SBO scenario in advanced pressurized water reactor is performed. MARS-KS is used as a best estimate thermal-hydraulic code and is loosely-coupled with Dakota software which is employed to develop the uncertainty quantification framework. Furthermore, the systems engineering approach is adopted to identify the requirements, functions and physical architecture, and to develop the verification and validation plan. For the preliminary analysis, 13 uncertainty parameters are propagated through the model to evaluate the stability and convergence of the framework. The developed framework will ultimately be used to quantify the aleatory and epistemic uncertainties associated with an extended SBO accident scenario and assess the coping capability of APR1400 and the effectiveness of the implemented FLEX strategies.