• Title/Summary/Keyword: Uncertainty Estimation Model

Search Result 317, Processing Time 0.024 seconds

Uncertainty Calculation Algorithm for the Estimation of the Radiochronometry of Nuclear Material (핵물질 연대측정을 위한 불확도 추정 알고리즘 연구)

  • JaeChan Park;TaeHoon Jeon;JungHo Song;MinSu Ju;JinYoung Chung;KiNam Kwon;WooChul Choi;JaeHak Cheong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.345-357
    • /
    • 2023
  • Nuclear forensics has been understood as a mendatory component in the international society for nuclear material control and non-proliferation verification. Radiochronometry of nuclear activities for nuclear forensics are decay series characteristics of nuclear materials and the Bateman equation to estimate when nuclear materials were purified and produced. Radiochronometry values have uncertainty of measurement due to the uncertainty factors in the estimation process. These uncertainties should be calculated using appropriate evaluation methods that are representative of the accuracy and reliability. The IAEA, US, and EU have been researched on radiochronometry and uncertainty of measurement, although the uncertainty calculation method using the Bateman equation is limited by the underestimation of the decay constant and the impossibility of estimating the age of more than one generation, so it is necessary to conduct uncertainty calculation research using computer simulation such as Monte Carlo method. This highlights the need for research using computational simulations, such as the Monte Carlo method, to overcome these limitations. In this study, we have analyzed mathematical models and the LHS (Latin Hypercube Sampling) methods to enhance the reliability of radiochronometry which is to develop an uncertainty algorithm for nuclear material radiochronometry using Bateman Equation. We analyzed the LHS method, which can obtain effective statistical results with a small number of samples, and applied it to algorithms that are Monte Carlo methods for uncertainty calculation by computer simulation. This was implemented through the MATLAB computational software. The uncertainty calculation model using mathematical models demonstrated characteristics based on the relationship between sensitivity coefficients and radiative equilibrium. Computational simulation random sampling showed characteristics dependent on random sampling methods, sampling iteration counts, and the probability distribution of uncertainty factors. For validation, we compared models from various international organizations, mathematical models, and the Monte Carlo method. The developed algorithm was found to perform calculations at an equivalent level of accuracy compared to overseas institutions and mathematical model-based methods. To enhance usability, future research and comparisons·validations need to incorporate more complex decay chains and non-homogeneous conditions. The results of this study can serve as foundational technology in the nuclear forensics field, providing tools for the identification of signature nuclides and aiding in the research, development, comparison, and validation of related technologies.

Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources (수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가)

  • Park E-Hyung;Im Eun-Soon;Kwon Won-Tae;Lee Eun-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF

A Study on the Point Placement Task of Robot System Based on the Vision System (비젼시스템을 이용한 로봇시스템의 점배치실험에 관한 연구)

  • Jang, Wan-Shik;You, Chang-gyou
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.175-183
    • /
    • 1996
  • This paper presents three-dimensional robot task using the vision control method. A minimum of two cameras is required to place points on end dffectors of n degree-of-freedom manipulators relative to other bodies. This is accomplished using a sequential estimation scheme that permits placement of these points in each of the two-dimensional image planes of monitoring cameras. Estimation model is developed based on a model that generalizes known three-axis manipulator kinematics to accommodate unknown relative camera position and orientation, etc. This model uses six uncertainty-of-view parameters estimated by the iteration method.

  • PDF

Identification of hard bound on model uncertainty in frequency domain

  • Kawata, M.;Sano, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.372-377
    • /
    • 1993
  • In this paper, we investigate a set-membership identification approach to the quantification of an upper bound of model uncertainty in frequency domain, which is required in the H$_{\infty}$ robust control system design. First we formulate this problem as a set-membership identification of a nominal model error in the presence f unknown noise input with unknown bound, while the ordinary set-membership approaches assume that an upper bound of the uncertain input is known. For this purpose, the proposed algorithm includes the estimation of the bound of the uncertain input. thus the proposed method can obtain the hard bound of the model error in frequency domain as well as a parametric lower-order nominal model. Finally numerical simulation results are shown to confirm the validity of the presented algorithm..

  • PDF

The Effect of Uncertainty in Roughness and Discharge on Flood Inundation Mapping (조도계수와 유량의 불확실성이 홍수범람도 구축에 미치는 영향)

  • Jung, Younghun;Yeo, Kyu Dong;Kim, Soo Young;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.937-945
    • /
    • 2013
  • The accuracy of flood inundation maps is determined by the uncertainty propagated from all variables involved in the overall process including input data, model parameters and modeling approaches. This study investigated the uncertainty arising from key variables (flow condition and Manning's n) among model variables in flood inundation mapping for the Missouri River near Boonville, Missouri, USA. Methodology of this study involves the generalized likelihood uncertainty estimation (GLUE) to quantify the uncertainty bounds of flood inundation area. Uncertainty bounds in the GLUE procedure are evaluated by selecting two likelihood functions, which is two statistic (inverse of sum of squared error (1/SAE) and inverse of sum of absolute error (1/SSE)) based on an observed water surface elevation and simulated water surface elevations. The results from GLUE show that likelihood measure based on 1/SSE is more sensitive on observation than likelihood measure based on 1/SAE, and that the uncertainty propagated from two variables produces an uncertainty bound of about 2% in the inundation area compared to observed inundation. Based on the results obtained form this study, it is expected that this study will be useful to identify the characteristic of flood.

A Robust Extended Filter Design for SDINS In-Flight Alignment

  • Yu, Myeong-Jong;Lee, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.520-526
    • /
    • 2003
  • In the case of a strapdown inertial navigation system (SDINS) with sizeable attitude errors, the uncertainty caused by linearization of the system degrades the performance of the filter. In this paper, a robust filter and various error models for the uncertainty are presented. The analytical characteristics of the proposed filter are also investigated. The results show that the filter does not require the statistical property of the system disturbance and that the region of the estimation error depends on a freedom parameter in the worst case. Then, the uncertainty of the SDINS is derived. Depending on the choice of the reference frame and the attitude error state, several error models are presented. Finally, various in-flight alignment methods are proposed by combining the robust filter with the error models. Simulation results demonstrate that the proposed filter effectively improves the performance.

Uncertainty quantification based on similarity analysis of reactor physics benchmark experiments for SFR using TRU metallic fuel

  • YuGwon Jo;Jaewoon Yoo;Jong-Hyuk Won;Jae-Yong Lim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3626-3643
    • /
    • 2024
  • One of the issues in the development of the sodium-cooled fast reactor (SFR) using transuranic (TRU) metallic fuel is the absence of criticality benchmark experiment that faithfully mocks up the nuclear characteristics of the target design for validation of the reactor core design code and its uncertainty quantification (UQ). This study aims to quantify the criticality uncertainty of a typical TRU burner with metallic fuel by using the standard upper safety limit (USL) estimation framework based on the similarity analysis of existing benchmark experiments but elaborated in two aspects:1) application of two-sided rather than one-sided tolerance interval and 2) inclusion of additional uncertainty to account for fission products and minor actinides not included in the benchmark experiments. To conduct the similarity analysis and evaluate the nuclear-data induced uncertainty, existing, well-verified computing codes were integrated, including the nuclear data sampling code SANDY, the nuclear data processing code NJOY, and the continuous-energy Monte Carlo code McCARD. Finally, using the SFR benchmark database comprising both publicly available and proprietary benchmark experiments, the criticality uncertainty of the TRU core model with metallic fuel was evaluated.

An Extended Kalman Filter Robust to Linearization Error (선형화 오차에 강인한 확장칼만필터)

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2006
  • In this paper, a new-type Extended Kalman Filter (EKF) is proposed as a robust nonlinear filter for a stochastic nonlinear system. The original EKF is widely used for various nonlinear system applications. But it is fragile to its estimation errors because they give rise to linearization errors that affect the system mode1 as the modeling errors. The linearization errors are nonlinear functions of the estimation errors therefore it is very difficult to obtain the accurate error covariance of the EKF using the linear form. The inaccurately estimated error covariance hinders the EKF from being a sub-optimal estimator. The proposed filter tries to obtain the upper bound of the error covariance tolerating the uncertainty of the error covariance instead of trying to obtain the accurate one. It treats the linearization errors as uncertain modeling errors that can be handled by the robust linear filtering. In order to be more robust to the estimation errors than the original EKF, the proposed filter minimizes the upper bound like the robust linear filter that is applied to the linear model with uncertainty. The in-flight alignment problem of the inertial navigation system with GPS position measurements is a good example that the proposed robust filter is applicable to. The simulation results show the efficiency of the proposed filter in the robustness to initial estimation errors of the filter.

The Use of Satellite Image for Uncertainty Analysis in Flood Inundation Mapping (홍수범람도 불확실성 해석을 위한 인공위성사진의 활용)

  • Jung, Younghun;Ryu, Kwanghyun;Yi, Choongsung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.549-557
    • /
    • 2013
  • An flood inundation map is able to convey spatial distribution of inundation to a decision maker for flood risk management. A roughness coefficient with unclear values and a discharge obtained from the stage-discharge rating equation are key sources of uncertainty in flood inundation mapping by using a hydraulic model. Also, the uncertainty analysis needs an observation for the flood inundation, and satellite images is useful to obtain spatial distribution of flood. Accordingly, the objective of this study is to quantify uncertainty arising roughness and discharge in flood inundation mapping by using a hydraulic model and a satellite image. To perform this, flood inundations were simulated by HEC-RAS and terrain analysis, and ISODATA (Iterative Self-Organizing Data Analysis) was used to classify waterbody from Landsat 5TM imagery. The classified waterbody was used as an observation to calculate F-statistic (likelihood measure) in GLUE (Generalized Likelihood Uncertainty Estimation). The results from GLUE show that flood inundation areas are 74.59 $km^2$ for lower 5 % uncertainty bound and 151.95 $km^2$ for upper 95% uncertainty bound, respectively. The quantification of uncertainty in flood inundation mapping will play a significant role in realizing the efficient flood risk management.

Assessment of the uncertainty in the SWAT parameters based on formal and informal likelihood measure (정형·비정형 우도에 의한 SWAT 매개변수의 불확실성 평가)

  • Seong, Yeon Jeong;Lee, Sang Hyup;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.931-940
    • /
    • 2019
  • In hydrologic models, parameters are mainly used to reflect hydrologic elements or to supplement the simplified models. In this process, the proper selection of the parameters in the model can reduce the uncertainty. Accordingly, this study attempted to quantify the uncertainty of SWAT parameters using the General Likelihood Uncertainty Estimation (GLUE). Uncertainty analysis on SWAT parameters was conducted by using the formal and informal likelihood measures. The Lognormal function and Nash-Sutcliffe Efficiency (NSE) were used for formal and informal likelihood, respectively. Subjective factors are included in the selection of the likelihood function and the threshold, but the behavioral models were created by selecting top 30% lognormal for formal likelihood and NSE above 0.5 for informal likelihood. Despite the subjectivity in the selection of the likelihood and the threshold, there was a small difference between the formal and informal likelihoods. In addition, among the SWAT parameters, ALPHA_BF which reflects baseflow characteristics is the most sensitive. Based on this study, if the range of SWAT model parameters satisfying a certain threshold for each watershed is classified, it is expected that users will have more practical or academic access to the SWAT model.