• Title/Summary/Keyword: Uncertainty Estimation Model

Search Result 317, Processing Time 0.026 seconds

Application of Rainfall Runoff Model with Rainfall Uncertainty (강우자료의 불확실성을 고려한 강우 유출 모형의 적용)

  • Lee, Hyo-Sang;Jeon, Min-Woo;Balin, Daniela;Rode, Michael
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.773-783
    • /
    • 2009
  • The effects of rainfall input uncertainty on predictions of stream flow are studied based extended GLUE (Generalized Likelihood Uncertainty Estimation) approach. The uncertainty in the rainfall data is implemented by systematic/non-systematic rainfall measurement analysis in Weida catchment, Germany. PDM (Probability Distribution Model) rainfall runoff model is selected for hydrological representation of the catchment. Using general correction procedure and DUE(Data Uncertainty Engine), feasible rainfall time series are generated. These series are applied to PDM in MC(Monte Carlo) and GLUE method; Posterior distributions of the model parameters are examined and behavioural model parameters are selected for simplified GLUE prediction of stream flow. All predictions are combined to develop ensemble prediction and 90 percentile of ensemble prediction, which are used to show the effects of uncertainty sources of input data and model parameters. The results show acceptable performances in all flow regime, except underestimation of the peak flows. These results are not definite proof of the effects of rainfall uncertainty on parameter estimation; however, extended GLUE approach in this study is a potential method which can include major uncertainty in the rainfall-runoff modelling.

Bayesian estimation of tension in bridge hangers using modal frequency measurements

  • Papadimitriou, Costas;Giakoumi, Konstantina;Argyris, Costas;Spyrou, Leonidas A.;Panetsos, Panagiotis
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.349-375
    • /
    • 2016
  • The tension of an arch bridge hanger is estimated using a number of experimentally identified modal frequencies. The hanger is connected through metallic plates to the bridge deck and arch. Two different categories of model classes are considered to simulate the vibrations of the hanger: an analytical model based on the Euler-Bernoulli beam theory, and a high-fidelity finite element (FE) model. A Bayesian parameter estimation and model selection method is used to discriminate between models, select the best model, and estimate the hanger tension and its uncertainty. It is demonstrated that the end plate connections and boundary conditions of the hanger due to the flexibility of the deck/arch significantly affect the estimate of the axial load and its uncertainty. A fixed-end high fidelity FE model of the hanger underestimates the hanger tension by more than 20 compared to a baseline FE model with flexible supports. Simplified beam models can give fairly accurate results, close to the ones obtained from the high fidelity FE model with flexible support conditions, provided that the concept of equivalent length is introduced and/or end rotational springs are included to simulate the flexibility of the hanger ends. The effect of the number of experimentally identified modal frequencies on the estimates of the hanger tension and its uncertainty is investigated.

Calibration and uncertainty analysis of integrated surface-subsurface model using iterative ensemble smoother for regional scale surface water-groundwater interaction modeling

  • Bisrat Ayalew Yifru;Seoro Lee;Woon Ji Park;Kyoung Jae Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.287-287
    • /
    • 2023
  • Surface water-groundwater interaction (SWGI) is an important hydrological process that influences both the quantity and quality of water resources. However, regional scale SWGI model calibration and uncertainty analysis have been a challenge because integrated models inherently carry a vast number of parameters, modeling assumptions, and inputs, potentially leaving little time and budget to explore questions related to model performance and forecasting. In this study, we have proposed the application of iterative ensemble smoother (IES) for uncertainty analysis and calibration of the widely used integrated surface-subsurface model, SWAT-MODFLOW. SWAT-MODFLOW integrates Soil and Water Assessment Tool (SWAT) and a three-dimensional finite difference model (MODFLOW). The model was calibrated using a parameter estimation tool (PEST). The major advantage of the employed IES is that the number of model runs required for the calibration of an ensemble is independent of the number of adjustable parameters. The pilot point approach was followed to calibrate the aquifer parameters, namely hydraulic conductivity, specific storage, and specific yield. The parameter estimation process for the SWAT model focused primarily on surface-related parameters. The uncertainties both in the streamflow and groundwater level were assessed. The work presented provides valuable insights for future endeavors in coupled surface-subsurface modeling, data collection, model development, and informed decision-making.

  • PDF

Estimation of Flash Flood Guidance considering Uncertainty of Rainfall-Runoff Model (강우-유출 모형의 불확실성을 고려한 돌발홍수기준)

  • Lee, Keon-Haeng;Kim, Hung-Soo;Kim, Soo-Jun;Kim, Byung-Sik
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.155-163
    • /
    • 2010
  • The flash flood is characterized as flood leading to damage by heavy rainfall occurred in steep slope and impervious area with short duration. Flash flood occurs when rainfall exceeds Flash Flood Guidance(FFG). So, the accurate estimation of FFG will be helpful in flash flood forecasting and warning system. Say, if we can reduce the uncertainty of rainfall-runoff relationship, FFG can be estimated more accurately. However, since the rainfall-runoff models have their own parameter characteristics, the uncertainty of FFG will depend upon the selection of rainfall-runoff model. This study used four rainfall-runoff models of HEC-HMS model, Storage Function model, SSARR model and TANK model for the estimation of models' uncertainties by using Monte Carlo simulation. Then, we derived the confidence limits of rainfall-runoff relationship by four models on 95%-confidence level.

Performance bounds of continuous-time optimal FIR filter under modeling uncertainty (모델 불확실성에 대한 연속형 최적 FIR 필터의 성능한계)

  • Yoo, Kyung-Sang;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.20-24
    • /
    • 1995
  • In this paper we analyze the performance bounds of the optimal FIR filter in continuous time systems with modeling uncertainty. The performance bounds are presented by the estimation error convariance and they are here expressed by the upper bounds of the difference of the estimation error covariance between the real and nominal values in case of the system with model uncertainties whose upper bounds are imperfrctly known a priori. The performance bounds of the optimal FIR filter are compared with those of the Kalman filter via a numerical example applied to the estimation of the motion of an aircraft carrier at sea, which shows the former has better performances than the latter.

  • PDF

Robust Current Estimation of DC/DC Boost Converter against Load Variation (부하변동에 강인한 DC/DC 승압 컨버터의 잔류 추정)

  • Kim, In-Hyuk;Jeong, Goo-Jong;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2038-2040
    • /
    • 2009
  • This paper studies the state estimation problem for the current of DC/DC boost converters with parasitic inductor resistance. The parasitic resistance increases the system uncertainty when the output load variation occurs. In order to enhance the observation performance of the Luenberger observer this paper includes the integral of the estimation error signal to the estimation algorithm. By using the proposed PI observer the converter current signal is successfully reconstructed with the voltage measurement regardless of the load uncertainty. Computer simulation has been carried out by using Simulink/Sim Power System. Simulation results show the proposed method maintains robust estimation performance against the model uncertainty.

Measurement uncertainty in heavy-weight floor impact sounds (측정 불확도에 따른 중량충격음 측정편차에 관한 연구)

  • Yoo, Seung-Yup;Kim, Yong-Hee;Sim, Myoung-Hee;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.826-829
    • /
    • 2008
  • In a field measurement, measurement errors are produced by measuring environments and systematic errors in the measurement procedure. Measurement errors can be expressed as a measurement uncertainty. In this study, the measurement uncertainty and various measuring factors are investigated in heavy-weight impact sounds. According to KS 2810-2, the model functions, which is the estimation of the maximum SPL measurement in each octave band frequency, are determined. From this estimation model, 3.53dB is shown in 63Hz. This level is caused by the sound field of the receiving room, which does not meet the diffusing field.

  • PDF

FIR Fixed-Interval Smoothing Filter for Discrete Nonlinear System with Modeling Uncertainty and Its Application to DR/GPS Integrated Navigation System (모델링 불확실성을 갖는 이산구조 비선형 시스템을 위한 유한 임펄스 응답 고정구간 스무딩 필터 및 DR/GPS 결합항법 시스템에 적용)

  • Cho, Seong Yun;Kim, Kyong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.481-487
    • /
    • 2013
  • This paper presents an FIR (Finite Impulse Response) fixed-interval smoothing filter for fast and exact estimating state variables of a discrete nonlinear system with modeling uncertainty. Conventional IIR (Infinite Impulse Response) filter and smoothing filter can estimate state variables of a system with an exact model when the system is observable. When there is an uncertainty in the system model, however, conventional IIR filter and smoothing filter may cause large errors because the filters cannot estimate the state variables corresponding to the uncertain model exactly. To solve this problem, FIR filters that have fast estimation properties and have robustness to the modeling uncertainty have been developed. However, there is time-delay estimation phenomenon in the FIR filter. The FIR smoothing filter proposed in this paper makes up for the drawbacks of the IIR filter, IIR smoothing filter, and FIR filter. Therefore, the FIR smoothing filter has good estimation performance irrespective of modeling uncertainty. The proposed FIR smoothing filter is applied to the integrated navigation system composed of a magnetic compass based DR (Dead Reckoning) and a GPS (Global Positioning System) receiver. Even when the magnetic compass error that changes largely as the surrounding magnetic field is modeled as a random constant, it is shown that the FIR smoothing filter can estimate the varying magnetic compass error fast and exactly with simulation results.

Hot Leg Temperature Uncertainty due to Thermal Stratification

  • Jang, Ho-Cheol;Ju, Kyong-In;Kim, Young-Bo;Sul, Young-Sil;Cheong, Jong-Sik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.29-35
    • /
    • 1996
  • For the Reactor Coolant System(RCS) flow rate measurement by the secondary calorimetric heat balance method, the coolant temperature of the hot leg is needed. Several Resistance Temperature Detectors(RTD) are installed in the hot leg to measure the temperature, but the average value of RTDs does not correctly represent the energy-averaged(bulk) temperature because of the thermal stratification phenomenon. Therefore some correction is introduced to predict the bulk temperature, but the correction inevitably contains uncertainty because the stratification is not defined well quantitatively yet. Therefore a large uncertainty for the correction has been used for the conservative estimation. But unrealistically large uncertainty causes degradation of the measurement method and yields difficulty to meet the acceptance criterion in start-up flow measurement test. In this paper, an analytical estimation is made on the correction and the related uncertainty using the measured hot leg velocity profile of System 80 reactor flow model test and the measured temperatures of YGN 3&4 and PVNGS 1&2 start-up tests. The results reveal that the magnitude of the correction uncertainty is much smaller than that used in the previous design. Therefore, the confidence on the flow rate measurement method can be improved and the difficulty in start-up flow measurement test can be lessened if the smaller correction uncertainty obtained through this estimation is applied.

  • PDF

An Alternative State Estimation Filtering Algorithm for Temporarily Uncertain Continuous Time System

  • Kim, Pyung Soo
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.588-598
    • /
    • 2020
  • An alternative state estimation filtering algorithm is designed for continuous time systems with noises as well as control input. Two kinds of estimation filters, which have different measurement memory structures, are operated selectively in order to use both filters effectively as needed. Firstly, the estimation filter with infinite memory structure is operated for a certain continuous time system. Secondly, the estimation filter with finite memory structure is operated for temporarily uncertain continuous time system. That is, depending on the presence of uncertainty, one of infinite memory structure and finite memory structure filtered estimates is operated selectively to obtain the valid estimate. A couple of test variables and declaration rule are developed to detect uncertainty presence or uncertainty absence, to operate the suitable one from two kinds of filtered estimates, and to obtain ultimately the valid filtered estimate. Through computer simulations for a continuous time aircraft engine system with different measurement memory lengths and temporary model uncertainties, the proposed state estimation filtering algorithm can work well in temporarily uncertain as well as certain continuous time systems. Moreover, the proposed state estimation filtering algorithm shows remarkable superiority to the infinite memory structure filtering when temporary uncertainties occur in succession.