• Title/Summary/Keyword: Uncertain system

Search Result 1,172, Processing Time 0.026 seconds

Robustness analysis of vibration control in structures with uncertain parameters using interval method

  • Chen, Su Huan;Song, Min;Chen, Yu Dong
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.185-204
    • /
    • 2005
  • Variations in system parameters due to uncertainties may result in system performance deterioration. Uncertainties in modeling of structures are often considered to ensure that control system is robust with respect to response errors. Hence, the uncertain concept plays an important role in vibration control of the engineering structures. The paper discusses the robustness of the stability of vibration control systems with uncertain parameters. The vibration control problem of an uncertain system is approximated by a deterministic one. The uncertain parameters are described by interval variables. The uncertain state matrix is constructed directly using system physical parameters and avoided to use bounds in Euclidean norm. The feedback gain matrix is determined based on the deterministic systems, and then it is applied to the actual uncertain systems. A method to calculate the upper and lower bounds of eigenvalues of the close-loop system with uncertain parameters is presented. The lower bounds of eigenvalues can be used to estimate the robustness of the stability the controlled system with uncertain parameters. Two numerical examples are given to illustrate the applications of the present approach.

A study on the stabilizing control of uncertain system with optimal control (최적제어이론을 이용한 불확실한 시스템의 제어 기법 연구)

  • 한형석;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.55-59
    • /
    • 1991
  • This paper presents a method for designing a full state feedback linear static control law. This will stabilize a given linear uncertain system and also guarantee the performance of the system. The uncertain systems are described by state equation which contains uncertain parameters in system and input distribution matrices. The method is based on the guaranteed cost control of Chang and Peng(1972). The controller gain can be obtained by the solution of a algebraic Riccati equation in which the input weighting matrices depend on the uncertainty bounds. The algebraic Riecati equation in this paper is same as that of weighted LQ regulator problem.

  • PDF

Dynamic Analysis and Design of Uncertain Systems Against Random Excitation Using probabilistic Method

  • Moon, Byung-Young;Kang, Beom-Soo;Park, Jung-Hyen
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1229-1238
    • /
    • 2002
  • In this paper, a method to obtain the sensitivity of eigenvalues and the random responses of the structure with uncertain parameters is proposed. The concept of the proposed method is that the perturbed equation of each uncertain substructure is obtained using the finite element method, and the perturbed equation of the overall structure is obtained using the mode synthesis method. By this way, the reduced order perturbed equation of the uncertain system can be obtained. And the response of the uncertain system is obtained using probability method. As a numerical example, a simple piping system is considered as an example structure. The damping and spring constants of the support are considered as the uncertain parameters. Then the variations of the eigenvalues, the correlation function and the power spectral density function of the responses are calculated. As a result, the proposed method is considered to be useful technique to analyze the sensitivities of eigenvalues and random response against random excitation in terms of the accuracy and the calculation time.

Robust Control for the Rewritable Optical Disk Drives with Sinusoidal Disturbance of Uncertain Frequencies (불확실한 주파수의 정현파 외란이 있는 기록형 광 디스크 드라이브의 강인 제어)

  • Lee, Moon-Noh;Jin, Kyoung-Bog;Moon, Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • This paper presents an output feedback controller design method for uncertain linear systems with sinusoidal disturbance of uncertain frequencies. The controller needs to compensate for the performance deterioration due to the uncertain frequencies of sinusoidal disturbance. To this end, we introduce a virtual system including the dynamics corresponding to the uncertain frequencies and design a controller which minimizes the output difference between the virtual system and the closed-loop system. In other words, the controller is designed so that the closed-loop system approximates the virtual system. The feedback controller is achieved by solving an LMI optimization problem involving a robust $H_{\infty}$ constraint. The advantages of the proposed design method are examined by comparing it with a design method that only minimizes the $H_{\infty}$ norm of the transfer function between the sinusoidal disturbance and the output. The proposed design method is applied to the track-following system of rewritable optical disk drives and is evaluated through an experiment.

Intelligent Digital Redesign of Uncertain Nonlinear Systems Using Power Series (Power Series를 이용한 불확실성을 포함된 비선형 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae;Kim, Do-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.496-498
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Robust Control of Electromagnetic Levitation System with Uncertain Coil Resistor (코일 저항의 불확실성을 가지는 자기 부상 시스템의 강인 제어)

  • Jeong, Min-Gil;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1096-1103
    • /
    • 2015
  • Electromagnetic levitation system(EMLS) is one of the well known nonlinear systems due to its high degree of nonlinearities. Moreover, when there are uncertain parameters in EMLS, it is not easy to have an accurate control of EMLS. In this paper, we first apply a standard input-output feedback linearzing controller to EMLS and investigate the possible control error caused by uncertain coil resistor. Then, as a remedy, we design and apply a robust controller using Lyapunov redesign technique to deal with this uncertain coil resistor in the system. The validity of our robust controller is verified via system analysis and experimental results.

Design of Adaptive Regulator for a Nonlinear Uncertain System (불확실성을 갖는 비선형 시스템의 적응 제어기 설계)

  • Jin, Ju-Wha;Yu, Kyung-Tak;Son, Young-Ik;Seo, Jin-Heo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF

Proofs of Utkin's Theorem for MIMO Uncertain Integral Linear Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2014
  • The uncertain integral linear system is the integral-augmented uncertain system to improve the resultant performance. In this note, for a MI(Multi Input) uncertain integral linear case, Utkin's theorem is proved clearly and comparatively. With respect to the two transformations(diagonalizations), the equation of the sliding mode is invariant. By using the results of this note, in the SMC for MIMO uncertain integral linear systems, the existence condition of the sliding mode on the predetermined sliding surface is easily proved. The effectiveness of the main results is verified through an illustrative example and simulation study.

Intelligent Digital Redesign of Uncertain Nonlinear Systems : Global approach (불확실성이 포함된 비선형 시스템에 대한 전역적 접근의 지능형 디지털 재설계)

  • Sung Hwachang;Joo Younghoon;Park Jinbae;kim Dowan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.95-98
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete -time system have proper reason. Sufficiently conditions for the global state -matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMls). Finally, we prove the effectiveness and stabilization of the proposed intelligent digital redesign method by applying the chaotic Lorentz system.

  • PDF

Robust Deterministic Control of Singularly Perturbed Uncertain Systems (특이섭동 불확실시스템의 견실확정제어)

  • 강철구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1542-1550
    • /
    • 1994
  • For a class of singularly perturbed uncertain system, an output feedback control law is designed. The controller structure is designed based on the uncertain reduced-order system, and the controller parameters are determined by information on the reduced-order and full-order systems. It has been shown that the reduces-order system with the designed controller possesses a stability property(specifically, a global uniform attractivity). Furthermore, the stability property of this control scheme is robust with respect to singular perturbation ; i.e., the full-order system, subject to the same controller, possesses the global uniform attractivity, provided the singular perturbation parameter $\mu<\mu^{*}$, where a threshold value $\mu^{*}$ can be computed from the information available on the full-order system.