• Title/Summary/Keyword: Uncertain parameters

Search Result 446, Processing Time 0.028 seconds

Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems (비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Lyoo, Young-Jae;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

Stable Input-Constrained Neural-Net Controller for Uncertain Nonlinear Systems

  • Jang-Hyun Park;Gwi-Tae Park
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.108-114
    • /
    • 2002
  • This paper describes the design of a robust adaptive controller for a nonlinear dynamical system with unknown nonlinearities. These unknown nonlinearities are approximated by multilayered neural networks (MNNs) whose parameters are adjusted on-line, according to some adaptive laws far controlling the output of the nonlinear system, to track a given trajectory. The main contribution of this paper is a method for considering input constraint with a rigorous stability proof. The Lyapunov synthesis approach is used to develop a state-feedback adaptive control algorithm based on the adaptive MNN model. An overall control system guarantees that the tracking error converges at about zero and that all signals involved are uniformly bounded even in the presence of input saturation. Theoretical results are illustrated through a simulation example.

  • PDF

Design of Robust Adaptive Fuzzy Controller for Uncertain Nonlinear System Using Estimation of Bounds for Approximation Errores and Dynamic Fuzzy Rule (근사화 오차의 유계상수 추정과 동적인 퍼지규칙을 이용한 비선형 계통에 대한 강인한 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun;Seo, Ho-Joon;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2308-2310
    • /
    • 2000
  • In adaptive fuzzy control, fuzzy systems are used to approximate the unknown plant nonlinearities. Until now, most of the papers in the field of controller design for nonlinear system using fuzzy systems considers the affine system with fixed grid-rule structure. This paper considers general nonlinear systems and dynamic fuzzy rule structure. Adaptive laws for fuzzy parameters and fuzzy rule structrue are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Modeling and $H_{\infty}$ Optimal Control Design for a Hydraulic Unit in ESP (ESP 유압 유니트의 모델링 및 $H_{\infty}$ 최적제어)

  • You, Seung-Han;Hahn, Jin-Oh;Cho, Young-Man;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.733-738
    • /
    • 2004
  • This paper deals with feedback control of a hydraulic unit for direct yaw moment control, a method used to actively maintain the dynamic stability of an automobile. The uncertain parameters and complex structure naturally call for empirical modeling of the hydraulic unit, which readily results in a control-oriented model with high fidelity. The identified model is cross-validated against experimental data under various conditions, which helps to establish model uncertainty. Then, the $H_{\infty}$ optimization technique is employed to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. The performance of the synthesized controller is verified using experimental results, which shows the viability of the proposed approach in a real-world application.

  • PDF

Stochastic Design Approach for the Guidance and Control System of an Automatic Landing Vehicle

  • Minami, Yoshinori;Miyazawa, Yoshikazu;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.41-46
    • /
    • 1998
  • In this paper, a stochastic approach based on a Monte Carlo simulation method for the design of a guidance and control (G & C) system of an automatic landing flight experiment (ALFLEX) vehicle is presented. The aim of this study is to design a G & C system robust against uncertainties in the vehicular dynamics. In this study, uncertain parameters and disturbances are treated as random variables in the Monte Carlo simulation. Then, some controller gains in the G & C system are tuned to satisfy conditions concerning the states at touchdown. The proposed method was applied to the ALFLEX vehicle. The simulation results shored the effectiveness of the present approach.

  • PDF

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF

Design of The Robust Fuzzy Controller Using State Feedback Gain (상태궤환이득을 이용한 강건한 퍼지 제어기의 설계)

  • 홍대승
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.496-508
    • /
    • 1999
  • Fuzzy System which are based on membership functions and rules can control nonlinear uncertain complex systems well. However Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm it takes long time to converge into global optimal parameters. Well-developed linear system theory should not be replaced by FLC but instead it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

A Fault Detection System Design for Nuclear Steam Generator Level Control System (원전 증기발생기 수위제어계통의 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 2006
  • This paper deals with a fault detection system design for nuclear steam generator water level control system. We expressed the nonlinear properties of the steam generator level system as a T-S fuzzy system with time varying uncertain parameters. We design a residual generator using a left coprime factorization of the T-S fuzzy model and a fault detection filter in order to improve the fault detection performance. We demonstrate the efficiency of the suggested design method via many computer simulations.

Direct Adaptive Fuzzy Controller for Nonaffine Nonlinear System (비어파인 비선형 시스템에 대한 직접 적응 퍼지 제어기)

  • 박장현;김성환;박영환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.315-322
    • /
    • 2004
  • A direct adaptive state-feedback controller for highly nonlinear systems is proposed. This paper considers uncertain or ill-defined nonaffine nonlinear systems and employs a static fuzzy logic system (FLS). The employed FLS estimates. and adaptively cancels an unknown plant nonlinearity using its proved universal approximation property. A control law and adaptive laws for unknown fuzzy parameters and bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov. The tracking error is guaranteed to be uniformly asymptotically stable rather than uniformly ultimately bounded with the aid of an additional robustifying control term. No a priori knowledge of an upper bound on an lumped uncertainty is required.

Output Tracking of Uncertain Fractional-order Systems via Robust Iterative Learning Sliding Mode Control

  • Razmjou, Ehsan-Ghotb;Sani, Seyed Kamal-Hosseini;Jalil-Sadati, Seyed
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1705-1714
    • /
    • 2018
  • This paper develops a novel controller called iterative learning sliding mode (ILSM) to control linear and nonlinear fractional-order systems. This control applies a combination structures of continuous and discontinuous controller, conducts the system output to the desired output and achieve better control performance. This controller is designed in the way to be robust against the external disturbance. It also estimates unknown parameters of fractional-order systems. The proposed controller unlike the conventional iterative learning control for fractional systems does not need to apply direct control input to output of the system. It is shown that the controller perform well in partial and complete observable conditions. Simulation results demonstrate very good performance of the iterative learning sliding mode controller for achieving the desired control objective by increasing the number of iterations in the control loop.