• 제목/요약/키워드: Uncertain Plant

검색결과 148건 처리시간 0.024초

3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계 (Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator)

  • 김진완;현동길;김영배
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

칼만 필터를 이용한 개선된 PID 제어기 설계 (The Design of an Improved PID Controller by Using the Kalman Filter)

  • 차인혁;권태종;한창수
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.7-15
    • /
    • 2000
  • This paper suggests an auto-tuning I'll) control algorithm that uses the advantage of PID controller and improves the system performance. The PID gains being designed by th- conventional method are tuned through the plant parameter estimation. The Extended Kalman Filter is used for the estimation. It works as an observer and noise filter. Moreover, as the plant state and the uncertain parameter could be estimated simultaneously, the proposed algorithm is very useful in the tracking control of a system with uncertain parameter. The auto-tuning I'll) controller could maintain the system performance in the case that the plant parameters are uncertain or varying. The proposed control algorithm requires a correct estimation of the plant parameter. The controller stability and the performance is considered through the stability criteria and a servo motor model. The Kalman filter estimates the most sensitive plant parameter, which is determined by the sensitivity analysis.

A robust design method for a long dead time system with an intergral mode

  • Ma, Jin-suk;Kim, sun-ja;Kwon, woo-hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.59.5-59
    • /
    • 2002
  • In this paper, we present a robust controller design method that can not only deal with the constant time delay plant but also an uncertain time delay one. For a constant time delay plant. The proposed DTC can independently adjust the set response and the disturbance response without any stability constraint. And in the uncertain time delay case, one can process the control design step with uncertainty norm bound. To verify real effectiveness, theoretical analysis and simulation results are given.

  • PDF

Robust control of the directly drived robot via model feedback control system

  • Narikiyo, Tatsuo;Izumi, Teruyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.669-674
    • /
    • 1989
  • Robot manipulators are highly coupled nonlinear systems and their motions are influenced by uncertain dynamics. In this paper a design methodology which is called model feedback control system or plant model control scheme is presented for the purpose of reducing the influence of the uncertain dynamics. This control system is applied to the trajectly control of the directly drived robot. Theoretically and experimentally performances resulting from use of this control scheme show that the influences of the uncertain dynamics are reduced obviously.

  • PDF

Position Control of Linear Actuator with Uncertain Time Delay in VDN

  • Kim, Jonghwi;Kiwon Song;Park, Gi-Sang;Park, Gi-Heung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.118.2-118
    • /
    • 2002
  • Uncertain time delay happens when the process reads the sensor data and sends the control input to the plant located at a remote site in distributed control system. As in the case of data network using TCP/IP, VDN that integrates both device network and data network has uncertain tim e delay. Uncertain time delay can cause degradation in stability of distributed control system based on VDN. This paper investigates the transmission characteristic of VDN and suggests a control scheme based on the Smith's predictor to minimize the effect of uncertain time delay. The validity of the proposed control scheme is demonstrated with tracking position control of experiments.

  • PDF

Safety Analysis on the Tritium Release Accidents

  • Yang, Hee joong
    • 품질경영학회지
    • /
    • 제19권2호
    • /
    • pp.96-107
    • /
    • 1991
  • At the design stage of a plant, the plausible causes and pathways of release of hazardous materials are not clearly known. Thus there exist large amount of uncertainties on the consequences resulting from the operation of a fusion plant. In order to better handle such uncertain circumstances, we utilize the Probabilistic Risk Assessment(PRA) for the safety analyses on fusion power plant. In this paper, we concentrate on the tritium release accident. We develop a simple model that describes the process and flow of tritium, by which we figure out the locations of tritium inventory and their vulnerability. We construct event tree models that lead to various levels of tritium release from abnormal initiating events. Branch parameters on the event tree are assessed from the fault tree analysis. Based on the event tree models we construct influence diagram models which are more useful for the parameter updating and analysis. We briefly discuss the parameter updating scheme, and finally develop the methodology to obtain the predictive distribution of consequences resulting from the operating a fusion power plant. We also discuss the way to utilize the results of testing on sub-systems to reduce the uncertain ties on over all system.

  • PDF

An H Output Feedback Control for Uncertain Singularly Perturbed T-S Fuzzy Systems

  • 류석환;오설동
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.840-847
    • /
    • 2009
  • This paper deals with an $H_{\infty}$ output feedback controller design for uncertain singularly perturbed T-S fuzzy systems. Integral quadratic constraints are used to describe various kinds of uncertainties of the plant. It is shown that the $H_{\infty}$ norm of the uncertain singularly perturbed fuzzy system is less than $\gamma$ for a sufficiently small $\varepsilon$ > 0 if the $H_{\infty}$ norms of both the slow and fast subsystem are less than $\gamma$. Using this fact, we develop a linear matrix inequality based design method which is independent of the singular perturbation parameter $\varepsilon$. A numerical example is provided to demonstrate the efficacy of the proposed design method.

가상 디바이스 네트워크상에서 불확실한 시간지연을 갖는 실시간 분산제어를 이용한 예지보전에 관한 연구 (Real-time Distributed Control in Virtual Device Network with Uncertain Time Delay for Predictive Maintenance (PM))

  • Kiwon Song;Gi-Heung Choi
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.154-160
    • /
    • 2003
  • 원격지에 위치한 분산제어 시스템과 센서 데이터 또는 제어 명령을 주고받을 때에는 불확실한 시간지연이 발생한다. TCP/IP 프로토콜을 이용한 데이터 네트워크와 마찬가지로 데이터 네트워크와 디바이스 네트워크를 결합한 가상 디자이스 네트워크도 불확실한 시간지연이 내재되어 있다. 이러한 시간지연은 분산제어시스템의 성능을 저하시키고 불안전성을 야기하는 원인이 된다. 본 논문에서는 이러한 네트워크상에 내재하는 시간지연을 평가하고 부정적인 효과를 최소화하기 위하여 Smith Predictor를 적용하였다. 제안된 제어 알고리즘은 실시간 서보제어를 통하여 효과를 입증하였으며 가상 디바이스 네트워크 개념에 근거한 분산제어 시스템을 이용하여 실시간 예지보전을 수행할 때 효과가 있음을 제시하였다.

QFT 를 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계 (Design of Force Control System for a Hydraulic Road Simulator using QFT)

  • 김진완;현동길;남양해;김영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1109-1114
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

  • PDF

정량적 피드백 이론을 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계 (Design of Force Control System for a Hydraulic Road Simulator Using Quantitative Feedback Theory)

  • 김진완;현동길;김영배
    • 대한기계학회논문집A
    • /
    • 제31권11호
    • /
    • pp.1069-1076
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT(Quantitative Feedback Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.