• Title/Summary/Keyword: Uncertain Nonlinear Systems

Search Result 253, Processing Time 0.189 seconds

Adaptive fuzzy sliding mode controller for uncertain nonlinear systems (불확실한 비선형 시스템에 대한 적응 퍼지 슬라이딩 모드 제어기)

  • Hwang Eun-Ju;Baek Jae-Ho;Kim Eun-Tae;Park Min-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.164-167
    • /
    • 2006
  • 본 논문에서는 불확실한 비선형 시스템에 대한 적응 퍼지 슬라이딩 모드 제어기를 설계한다. 불확실한 비선형 시스템에서 발생할 수 있는 파라미터의 변화를 대처하기 위해서 적응 퍼지 이론을 이용하였고, 외란으로 인한 불확실성을 슬라이딩 모드의 제어기를 통해서 해결하였다. 또한 퍼지 튜닝을 통해 슬라이딩 조건을 가변화함으로써 기존의 슬라이딩 모드 제어기에 비해 빠르고 정확하게 추종 가능하도록 제어기의 성능을 향상시킨다. 제안하는 제어기는 정확한 동역학 모델의 구현이 어렵고 복잡한 비선형 시스템에 외란 특성이 우수한 슬라이딩 모드와 실제 시스템을 표현하는 범용 근사자로 유용성이 입증된 퍼지 시스템을 이용하여 간단하고 쉽게 제어할 수 있도록 하였다. Lyapunov이론을 통하여 전역적인 안정화를 보이며, 마지막으로 역진자 시스템에 적용하여 제안된 제어기의 성능을 검증한다.

  • PDF

Robust Mixed H2/H Filter Design for Uncertain Fuzzy Systems (불확실한 퍼지시스템의 견실한 혼합 H2/H 필터 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.557-562
    • /
    • 2004
  • This paper deals with a robust mixed ${H_2}/{H_{\infty}}$ filter design problem for a nonlinear dynamic system modeled as a T-S fuzzy system. Integral quadratic constraints are used to describe various kinds of uncertainties of the plant. A sufficient condition for solvability is given in terms of linear matrix inequality problem which can be efficiently solved using a convex optimization technique. In order to demonstrate the Proposed method, a numerical design example is provided.

Friction Compensation of X-Y robot Using a Learning Control Technique (학습제어기법을 이용한 X-Y Table의 마찰보상)

  • Sohn, Kyoung-Oh;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.248-255
    • /
    • 2000
  • Whereas the linear PID controller is widely used for control of industrial servo systems a high precision positioning system is not easy to control only with the PID controller due to uncertain nonlinear dynamics such as friction backlash etc. As a viable means to overcome the difficulty a learning control scheme is proposed in this paper that is simple and straightforward to implement. The proposed learning controller takes full advantage of current feedback capability of the inner-loop of the control system in that electrical motor dynamics as the well as mechanical part of X-Y positioning system is included in the learning control scheme, The experimental results are given to demonstrate its feasibility and effectiveness in terms of convergence precision of tracking and robustness in comparison with the conventional control method.

  • PDF

The Implementation of Self-Structuring Radial-Basis Function Network for Identification of Uncertain Nonlinear Systems (비선형 시스템의 동정을 위한 자기 구조화된 RBFN의 구현)

  • 김기범;전재춘;김동원;허성회;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.329-332
    • /
    • 2003
  • 본 논문에서는 새로이 제안된 자기 구조화하는(Self-structuring) 새로운 Radial-Basis Function Network(RBFN)에 대해서 실험적인 검증을 했다. 이 자기 구조화하는 새로운 RBFN은 기존의 RBFN과 비교해서 여러 장점이 있다. Lyapunov 이론에 기초해서 새로운 학습 규칙을 선정하였기 때문에 시스템의 안정도를 보장할 수 있다. 그리고, 자기 구조화의 과정 즉, 생성과 병합을 통해 은닉층에서 적정수의 뉴런을 결정할 수 있다. 기존의 RBFN과 성능을 비교하기 위하여, 실제 비선형 시스템인 2축 암로봇에 대해 실험한 결과를 보였다. 결과적으로, 우리는 실험결과를 통해 자기 구조화하는 RBFN의 효율적인 구조와 시스템에 대한 안정도를 보장함을 볼 수 있다.

  • PDF

On-line Parameter Estimator Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.481-486
    • /
    • 2002
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-5) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control. Based on the derived design method, the parameter estimation for controllable canonical T-S fuzzy model is also Presented.

Design of The Robust Fuzzy Controller Using State Feedback Gain (상태궤환이득을 이용한 강건한 퍼지 제어기의 설계)

  • 홍대승
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.496-508
    • /
    • 1999
  • Fuzzy System which are based on membership functions and rules can control nonlinear uncertain complex systems well. However Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm it takes long time to converge into global optimal parameters. Well-developed linear system theory should not be replaced by FLC but instead it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

Fuzzy Model Identification using a mGA Hybrid Schemes (mGA의 혼합된 구조를 사용한 퍼지 모델 동정)

  • Ju, Yeong-Hun;Lee, Yeon-U;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.423-431
    • /
    • 2000
  • This paper presents a systematic approach to the input-output data-based fuzzy modeling for the complex and uncertain nonlinear systems, in which the conventional mathematical models may fail to give the satisfying results. To do this, we propose a new method that can yield a successful fuzzy model using a mGA hybrid schemes with a fine-tuning method. We also propose a new coding method fo chromosome for applying the mGA to the structure and parameter identifications of fuzzy model simultaneously. During mGA search, multi-purpose fitness function with a penalty process is proposed and adapted to guarantee the accurate and valid fuzzy modes. This coding scheme can effectively represent the zero-order Takagi-Sugeno fuzzy model. The proposed mGA hybrid schemes can coarsely optimize the structure and the parameters of the fuzzy inference system, and then fine tune the identified fuzzy model by using the gradient descent method. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its applications to two nonlinear systems.

  • PDF

Robust Control of a Haptic Interface Using LQG/LTR (LQG/LTR을 이용한 Haptic Interface의 강인제어)

  • Lee, Sang-Cheol;Park, Heon;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.757-763
    • /
    • 2002
  • A newly designed haptic interface enables an operator to control a remote robot precisely. It transmits position information to the remote robot and feeds back the interaction force from it. A control algorithm of haptic interface has been studied to improve the robustness and stability to uncertain dynamic environments with a proposed contact dynamic model that incorporates human hand dynamics. A simplified hybrid parallel robot dynamic model fur a 6 DOF haptic device was proposed to from a real time control system, which does not include nonlinear components. LQC/LTR scheme was adopted in this paper for the compensation of un-modeled dynamics. The recovery of the farce from the remote robot at the haptic interface was demonstrated through the experiments.

Adaptive Predistortion for High Power Amplifier by Exact Model Matching Approach

  • Ding, Yuanming;Pei, Bingnan;Nilkhamhang, Itthisek;Sano, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.401-406
    • /
    • 2004
  • In this paper, a new time-domain adaptive predistortion scheme is proposed to compensate for the nonlinearity of high power amplifiers (HPA) in OFDM systems. A complex Wiener-Hammerstein model (WHM) is adopted to describe the input-output relationship of unknown HPA with linear dynamics, and a power series model with memory (PSMWM) is used to approximate the HPA expressed by WHM. By using the PSMWM, the compensation input to HPA is calculated in a real-time manner so that the linearization from the predistorter input to the HPA output can be attained even if the nonlinear input-output relation of HPA is uncertain and changeable. In numerical example, the effectiveness of the proposed method is confirmed and compared with the identification method based on PSMWM.

  • PDF

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.