• 제목/요약/키워드: Uncertain Nonlinear Systems

Search Result 253, Processing Time 0.029 seconds

A Krein Space Approach for Robust Extended Kalman Filtering on Mobile Robots in the Presence of Uncertainties

  • Jin, Seung-Hee;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1771-1776
    • /
    • 2003
  • In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter.

  • PDF

Adaptive Output Feedback Control of Uncertain Nonlinear Systems with Time-Varying Parameters (시변 파라메터를 갖는 불확실 비선형 시스템의 적응 출력궤환 제어)

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1943-1945
    • /
    • 2001
  • In this paper, we present an adaptive output feedback control scheme for a class of uncertain nonlinear output-feedback form with time-varying parameters to which adaptive observer backstepping technique may not be applicable directly. In observer design, with the introduction of design function, we can deal with time-varying parameters in a very effective way. By the presented scheme, estimation error can be tuned to a desired small region around the origin via the design constants. Consequently, the observer with the presented design functions and the backstepping methodology achieve a robust regulation of the output tracking error while maintaining boundedness of all the signals and states.

  • PDF

Robust Adaptive Neural-Net Observer for Nonlinear Systems Using Filtering of Output Estimation Error (출력관측 오차의 필터링을 이용한 비선형 계통의 강인한 신경망 관측기 설계)

  • Park, Jang-Hyun;Yoon, Pil-Sang;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2320-2322
    • /
    • 2001
  • This paper describes the design of a robust adaptive neural-net(NN) observer for uncertain nonlinear dynamical system. The Lyapunov synthesis approach is used to guarantee a uniform ultimate boundedness property of the state estimation error, as well as of all other signals in the closed-loop system. Especially, for reducing the dynamic oder of the observer, we propose a new method in which no strictly positive real(SPR) condition is needed with on-line estimation of weights of the NNs. No a priori knowledge of an upper bounds on the uncertain terms is required. The theoretical results are illustrated through a simulation example.

  • PDF

A VSS observer-based sliding mode control for uncertain systems

  • Watanabe, Keigo;Jin, Sang-Ho;Kimura, Ichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1300-1305
    • /
    • 1990
  • A VSS observer-based sliding mode control is described for continuous-time systems with uncertain nonlinear elements, in which the Euclidean norm of unknown element is bounded by a known value. For a case of complete state information, we first derive a sliding mode controller consisting of three parts: a linear state feedback control, an equivalent input and a min-niax control. It is then shown that the present attractiveness condition is simpler than that for a case without using the concept of equivalent input. We next design a VSS observer as a completely dual form to the sliding mode controller. Finally, we discuss a cas of incomplete state information by applying the VSS observer.

  • PDF

Truck Backer-Upper Control using Fuzzy-Sliding Control (피지 슬라이딩 제어를 이용한 트럭 역주행 제어)

  • Song, Young-Mok;Yim, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2476-2478
    • /
    • 2000
  • Fuzzy Systems which are based on membership functions and rules, can control nonlinear, uncertain, complex systems well. However, Fuzzy logic controller(FLC) has problems: It is some difficult to design the stable FLC for a beginner. Because FLC depends mainly on individual experience. Sliding control is a powerful robust method to control nonlinearities and uncertain parameters systems. But it has a chattering problem by discontinuous control input according to sliding surface. Therfore it needs to be smoothed to achieve an optimal input. In this paper, To solve problems desinged Fuzzy Sliding Control. The effictiveness of result is shown by the simulation and the experimental test for Truck Backer-Upper Control.

  • PDF

Robust Low-complexity Design for Tracking Control of Uncertain Switched Pure-feedback Systems with Unknown Control Direction (미지의 방향성을 갖는 불확실한 스위치드 순궤환 시스템의 추종 제어를 위한 강인 저 복잡성 설계)

  • Lee, Seung-Woo;Yoo, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • This paper investigates a robust low-complexity design problem for tracking control of uncertain switched pure-feedback systems in the presence of unknown control direction. The completely unknown non-affine nonlinearities are assumed to be arbitrarily switched. By combining the nonlinear error transformation technique and Nussbaum-type functions, a robust tracking controller is designed without using any adaptive function approximators. Thus, compared with existing results, the proposed control scheme has the low-complexity property. From Lyapunov stability theory, it is shown that the tracking error remains within the preassigned transient and steady-state error bounds.

Robust Control for Singularly Perturbed Uncertain Systems with State Constraints

  • Lee, Sang-Yup;Kim, Eung-Ju;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.1-34
    • /
    • 2001
  • We deal with robust control problem for singularly perturbed linear systems with norm-bounded structured uncertainty under state constraints. We assume that the norm-bounded uncertainty is composed of repeated scalar-block and full-block forms. In the structured uncertainty, repeated scalar block forms account for uncertain physical parameter value and full-block forms may be some unknown nonlinear dynamics. In order deal with uncertainty and state constraints, we use LMI(Linear Matrix Inequality). The original problem is decomposed into two well behaved reduced order problems. Shinc two LMI problems are completely independent, each solution can be computed simultaneously and work in parallel.

  • PDF

A robust controller design for robot manipulators with actuator dynamics (구동기의 동특성을 고려한 로봇매니퓰레이터의 강인제어기 설계)

  • 박광석;황동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.139-142
    • /
    • 1997
  • In this paper, a robust controller is proposed to achieve an accurate tracking for an uncertain nonlinear plant with actuator dynamics. The extent of parameter uncertainty can be quantified by using linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is designed using the boundary layer technique around the sliding surface and guarantees the uniform ultimate boundedness of the tracking error.

  • PDF

An iterative learning and adaptive control scheme for a class of uncertain systems

  • Kuc, Tae-Yong;Lee, Jin-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.963-968
    • /
    • 1990
  • An iterative learning control scheme for tracking control of a class of uncertain nonlinear systems is presented. By introducing a model reference adaptive controller in the learning control structure, it is possible to achieve zero tracking of unknown system even when the upperbound of uncertainty in system dynamics is not known apriori. The adaptive controller pull the state of the system to the state of reference model via control gain adaptation at each iteration, while the learning controller attracts the model state to the desired one by synthesizing a suitable control input along with iteration numbers. In the controller role transition from the adaptive to the learning controller takes place in gradually as learning proceeds. Another feature of this control scheme is that robustness to bounded input disturbances is guaranteed by the linear controller in the feedback loop of the learning control scheme. In addition, since the proposed controller does not require any knowledge of the dynamic parameters of the system, it is flexible under uncertain environments. With these facts, computational easiness makes the learning scheme more feasible. Computer simulation results for the dynamic control of a two-axis robot manipulator shows a good performance of the scheme in relatively high speed operation of trajectory tracking.

  • PDF

Intelligent Digital Control of a Single Link Flexible-Joint Robot with Uncertainties (불확실성을 갖는 단일 링크 유연로봇의 지능형 디지털 제어)

  • Jang Kwon Kyu;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.318-323
    • /
    • 2005
  • In this paper, we propose a systematic method of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear system. A parallel distributed compensation (PDC) technique is then used to design a fuzzy model based controller for both stabilization and tracking. Finally, the designed continuous-time controller is converted to an equivalent discrete-time controller by using an intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy model based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, the single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.