• Title/Summary/Keyword: Umbra

Search Result 20, Processing Time 0.027 seconds

An Algorithm for Generating the Umbra from a Convex Quadric Light Source (볼록 이차 광원으로부터 완전음영부를 생성하는 알고리즘)

  • Yoo, Kwan-Hee;Shin, Sung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.541-548
    • /
    • 2000
  • An area light source in the three dimensional space shines past a scene polygon, to generate two types of shadow volumes for each scene polygon, i.e., one with partial occlusion and the other with the complete occlusion. These are called, penumbra and umbra, respectively. In this paper, consider the problem for computing the umbra of a convex polygon from convex quadric light sources such as circles, ellipses, spheres, ellipsoids and cylinders. First, we give characteristics of the boundary surfaces of the umbra and then propose an algorithm for generating the umbra using them.

  • PDF

Shadow Detection and Correction Method for Urban Area using KOMPSAT-3 Image (KOMPSAT-3 영상을 활용한 도심지 그림자 영역의 탐지 및 보정 방법)

  • Park, Sung-Hwan;Lee, Gyu-Seok;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1197-1213
    • /
    • 2017
  • This study was carried out to correct shadow area in urban area on KOMPSAT-3 satellite image. For this study, we analyzed characteristics of the shadow area represented by artificial structures in urban area. The proposed shadow correction method divides shadow area into umbra and penumbra areas according to intensity of darkness. The umbra area was detected through the histogram analysis and the statistical method of the NIR image, and then penumbra area and the sunlit area were detected from around the detected umbra area. The correction of the detected umbra and penumbra area were performed by applying the linear correlation correction method. As a result, it was confirmed that the proposed shadow correction method was visually performed well. Quantitative analysis was performed through profile analysis. It is proved that proposed method is useful for shadow area correction.

POSSIBLE PRESENCE OF LATERAL INFLUX OF THE PHOTOSPHERIC RADIATION WITHIN SUNSPOTS

  • Yun, Hong-Sik;Kim, Hyun-Goo
    • Journal of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.19-22
    • /
    • 1983
  • The reduced profiles of $C_2$ 5150.56, CN 3864.32, MgH 5150.20 and FeI 5150.84 lines, representing the penumbra, the penumbra-umbra boundary and the umbra of spa 6403 have been analyzed by comparing them with the synthetic profiles computed from a set of umbral and penumbral models. The results are presented and discussed. It is suggested that there may be a significant lateral flow of pbotospheric radiation into the umbral and penumbral regions of the sunspots.

  • PDF

Chromospheric Sunspot Oscillations in H-alpha and Ca II 8542A

  • Maurya, Ram Ajor
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.61.2-61.2
    • /
    • 2013
  • We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot using scanning spectroscopy in H-alpha and Ca II 8542A, with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler velocity maps. Temporal sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.

  • PDF

SIMULTANEOUS OBSERVATIONS OF HIGH RESOLUTION SPECTRA OVER A SUNSPOT UMBRA

  • Yun, Hong-Sik;Beebe, Herbert A.;Baggett, Wayne
    • Journal of The Korean Astronomical Society
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1980
  • Simultaneous observations of high resolution spectra of CaII H, K, ${\lambda}8542\;and\;{\lambda}8498$ have been made over a sunspot umbra (SPO 5007) by means of Sacramento Peak Observatory's HIRKHAD program with the Echelle spectrograph at the Vacuum Tower Telescope. The observed spectra scanned by SPO's fast microphotometer have been reduced for later theoretical interpretations. The reduced profiles, sampled over a region which is thought to be coolest over the spot, are presented in units of absolute intensity. The core intensity ratios of $I(K_3)/I(H_3);and\;I({\lambda}8498)/I({\lambda}8542)$ arc found to be 1.3 and 1.14, respectively.

  • PDF

A Study Based on Na $D_2$ Profiles in Sunspots

  • Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1970
  • The earlier findings on the radiative heating through the umbral walls in large sunspots are further investigated. No significant evidence for the umbra! heating has been found in small-sized sunspot umbrae.

  • PDF

DYNAMICAL CHARACTERISTICS OF SUNSPOT CHROMOSPHERES II. ANALYSIS OF CA II H, K AND ${\lambda}8498$ LINES OF A SUNSPOT (SPO 5007) FOR OSCILLATORY MOTIONS

  • Yoon, Tae-Sam;Yun, Hong-Sik;Kim, Jeong-Hoon
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.245-253
    • /
    • 1995
  • We have analyzed the time series of Ca II H,K and ${\lambda}8498$ line profiles taken for a sunspot (SPO 5007) with the Echelle spectrograph attached to Vacuum Tower Telescope at Sacramento Peak Solar Observatory. Each set of spectra was taken simultaneously for 20 minutes at a time interval of 30 seconds. A total of 40 photographic films for each line was scanned by a PDS at Korea Astronomy Observatory. The central peak intensity of Ca II H ($I_{max}$), the intensity measured at ${\Delta}{\lambda}=-0.1{\AA}$ from the line center of ${\lambda}8498(I_{{\lambda}8489})$, the radial velocity ($V_r$) and the Doppler width (${\Delta}{\lambda}_D$) estimated from Ca II H have been measured to study the dynamical behaviors of the sunspot chromosphere. Fourier analysis has been carried out for these measured quantities. Our main results are as follows: (1) We have confirmed the 3-minute oscillation being dominant throughout the umbra. The period of oscillations jumps from 180 sec in the umbra to 500 to 1000 sec in the penumbra. (2) The nonlinear character of the umbral oscillation is noted from the observed sawtooth shaped radial velocity fluctuations with amplitudes reaching up to $5{\sim}6\;km/sec$. (3) The spatial distribution of the maximum powers shows that the power of oscillations is stronger in the umbra than in the penumbra. (4) The spatial distributions of the time averaged < $I_{max}$ > and < $V_r$ > across the spot are found to be nearly axially symmetric, implying that the physical quantities derived from the line profiles of Ca II H and ${\lambda}8498$ are inherently associated with the geometry of the magnetic field distribution of the spot. (5) The central peaks of the CaII H emission core lead the upward motions of the umbral atmosphere by $90^{\circ}$, while no phase delay is found in intensities between $I_{max}$ and $I_{{\lambda}8498}$, suggesting that the umbral oscillation is of standing waves.

  • PDF

Statistical Studies on the Physical Parameters and Oscillations of Sunspots and Flares

  • Cho, Il-Hyun;Cho, Kyung-Suk;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2016
  • We perform three statistical studies on the physical properties and oscillations in the confined plasma such as a photospheric sunspot and confined coronal loop. From the statistical studies on the sunspot umbra and its oscillation, we find that (1) the total magnetic flux inside the umbra for the three groups increases proportionally with the powers of the umbral area and the power indices in the three groups significantly differ from each other; (2) the three groups have different characteristics in their umbral area, intensity, magnetic field strength, and Doppler velocity as well as their relationships; (3) the mean frequency of the umbral oscillations increases with the umbral mean magnetic field strength and height; (4) the time delay of the core intensity of Fe I absorption line relative to the continuum which are de-convolved with the frequency range higher than 3.5 mHz is mostly positive, implying that the photospheric umbral oscillations are likely upwardly propagating; (5) the umbral mean plasma beta ranges approximately 0.6-1.1 and does not vary significantly from pores to mature sunspots. From the comparative study on the quasi-periodic pulsations (QPPs) in the solar and stellar flares, (6) we find that the power index of the periods scaling the damping times observed in the stellar QPPs is consistent with that observed in the solar QPPs, suggesting that physical mechanisms responsible for the stellar QPPs are likely the magneto-hydrodynamic oscillation of solar coronal loops.

  • PDF

Subsurface structure of a sunspot inferred from umbral flashes

  • Cho, Kyuhyoun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.79.4-80
    • /
    • 2021
  • Sunspots' subsurface structure is an important subject to explain their stability and energy transport. Previous studies suggested two models for the subsurface structure of sunspots: monolithic model and cluster model. However, it is not revealed which model is more plausible so far. We obtain clues about the subsurface structure of sunspots by analyzing the motion of umbral flashes observed by the IRIS Mg II 2796Å slit-jaw images (SJI). The umbral flashes are believed as shock phenomena developed from upward propagating slow magnetohydrodynamic (MHD) waves. If the MHD waves are generated by convective motion below sunspots, the apparent origin of the umbral flashes known as oscillation center will indicate the horizontal position of convection cells. Thus, the distribution of the oscillation centers is useful to investigate the subsurface structure of sunspots. We analyze the spatial distribution of oscillation centers in the merged sunspot. As a result, we found that the oscillation centers distributed over the whole umbra regardless of the convergent interface between two merged sunspots. It implies that the subsurface structure of the sunspot is not much different from the convergent interface, and supports that many field-free gaps may exist below the umbra as the cluster model expected. For more concrete results, we should confirm that the oscillation centers determined by the umbral flashes accurately reflect the position of wave sources.

  • PDF