• Title/Summary/Keyword: Umbilical Cord Matrix

Search Result 13, Processing Time 0.02 seconds

Differentiation of Osteoblast Progenitor Cells from Human Umbilical Cord Blood (제대혈액에서 골조직 특이세포로의 분화)

  • Hong, Seung-Jin;Lee, Eun-A;Chae, Gue-Tae;Han, Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.166-174
    • /
    • 2002
  • Background: Human umbilical cord bloods, which could be taken during the delivery are utilized as a source of hematopoietic stem cells. Also in cord blood, there are several kinds of stem cells such as endothelial and mesenchymal stem cells. Methods: We isolated the mesenchymal stem cells from human umbilical cord bloods and confirmed the differentiation of these cells into osteoblast progenitor cells. The mesenchymal stem cells derived from umbilical cord blood have the ability to differentiate into specific tissue cells, which is one of characteristics of stem cells. These cells were originated from the multipolar shaped cells out of adherent cells of the umbilical cord blood mononuclear cell culture. Results: The mesenchymal stem cells expressed cell surface antigen CD13, CD90, CD102, CD105, ${\alpha}$-smooth muscle actin and cytoplasmic antigen vimentine. Having cultrued these cells in bone formation media, we observed the formation of extracellular matrix and the expression of alkaline phosphatase and of mRNA of cbfa-1, ostoecalcin and type I collagen. Conclusion: From these results we concluded that the cells isolated from the umbilical cord blood were mesenchymal stem cells, which we could differentiate into osteoblast when cultured in bone formation media. In short, it is suggested that these cells could be used as a new source of stem cells, which has the probability to alternate the embryonic stem cells.

Effects of Serial Passage on the Characteristics and Chondrogenic Differentiation of Canine Umbilical Cord Matrix Derived Mesenchymal Stem Cells

  • Lee, K.S.;Cha, S.H.;Kang, H.W.;Song, J.Y.;Lee, K.W.;Ko, K.B.;Lee, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.588-595
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) are often known to have a therapeutic potential in the cell-mediated repair for fatal or incurable diseases. In this study, canine umbilical cord MSCs (cUC-MSCs) were isolated from umbilical cord matrix (n = 3) and subjected to proliferative culture for 5 consecutive passages. The cells at each passage were characterized for multipotent MSC properties such as proliferation kinetics, expression patterns of MSC surface markers and self-renewal associated markers, and chondrogenic differentiation. In results, the proliferation of the cells as determined by the cumulative population doubling level was observed at its peak on passage 3 and stopped after passage 5, whereas cell doubling time dramatically increased after passage 4. Expression of MSC surface markers (CD44, CD54, CD61, CD80, CD90 and Flk-1), molecule (HMGA2) and pluripotent markers (sox2, nanog) associated with self-renewal was negatively correlated with the number of passages. However, MSC surface marker (CD105) and pluripotent marker (Oct3/4) decreased with increasing the number of subpassage. cUC-MSCs at passage 1 to 5 underwent chondrogenesis under specific culture conditions, but percentage of chondrogenic differentiation decreased with increasing the number of subpassage. Collectively, the present study suggested that sequential subpassage could affect multipotent properties of cUC-MSCs and needs to be addressed before clinical applications.

Proteomic Analysis of the Hydrophobic Fraction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood

  • Jeong, Ju Ah;Lee, Yoon;Lee, Woobok;Jung, Sangwon;Lee, Dong-Seong;Jeong, Namcheol;Lee, Hyun Soo;Bae, Yongsoo;Jeon, Choon-Ju;Kim, Hoeon
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2006
  • Mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering, but their application has been impeded by lack of knowledge of their core biological properties. In order to identify MSC-specific proteins, the hydrophobic protein fraction was individually prepared from two different umbilical cord blood (UCB)-derived MSC populations; these were then subjected to two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). Although the 2D gel patterns differed somewhat between the two samples, computer-assisted image analysis identified shared protein spots. 35 spots were reliably identified corresponding to 32 different proteins, many of which were chaperones. Based on their primary sub-cellular locations the proteins could be grouped into 6 categories: extracellular, cell surface, endoplasmic reticular, mitochondrial, cytoplasmic and cytoskeletal proteins. This map of the water-insoluble proteome may provide valuable insights into the biology of the cell surface and other compartments of human MSCs.

IEEE 의용생체공학회 참관기

  • 이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.251-252
    • /
    • 1988
  • To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atelocollagen was produced: The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength.

  • PDF

우리 학회 활성화 방안

  • 한만청
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.89-90
    • /
    • 1989
  • To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased.

  • PDF

Biodegradable Inorganic-Organic Composite Artiticial Bone Substitue -Part2. Collagen purification and its physical and biological properties-

  • Hwal Suh
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.341-346
    • /
    • 1994
  • To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atel- ocollagen was produced. The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength.

  • PDF

Trans-differentiation Induction of Human-mesenchymal Stem Cells Derived from Different Tissue Origin and Evaluation of their Potential for Differentiation into Corneal Epithelial-like Cells

  • Moon, Sun-Woung;Lee, Hyeon-Jeong;Lee, Won-Jae;Ock, Sun-A;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.33 no.2
    • /
    • pp.85-97
    • /
    • 2018
  • The trans-differentiation potential of mesenchymal stem cells (MSCs) is employed, but there is little understanding of the cell source-dependent trans-differentiation potential of MSCs into corneal epithelial cells. In the present study, we induced trans-differentiation of MSCs derived from umbilical cord matrix (UCM-MSCs) and from dental tissue (D-MSCs), and we comparatively evaluated the in vitro trans-differentiation properties of both MSCs into corneal epithelial-like cells. Specific cell surface markers of MSC (CD44, CD73, CD90, and CD105) were detected in both UCM-MSCs and D-MSCs, but MHCII and CD119 were significantly lower (P < 0.05) in UCM-MSCs than in D-MSCs. In UCM-MSCs, not only expression levels of Oct3/4 and Nanog but also proliferation ability were significantly higher (P < 0.05) than in D-MSCs. In vitro differentiation abilities into adipocytes and osteocytes were confirmed for both MSCs. UCM-MSCs and D-MSCs were successfully trans-differentiated into corneal epithelial cells, and expression of lineage-specific markers (Cytokeratin-3, -8, and -12) were confirmed in both MSCs using immunofluorescence staining and qRT-PCR analysis. In particular, the differentiation capacity of UCM-MSCs into corneal epithelial cells was significantly higher (P < 0.05) than that of D-MSCs. In conclusion, UCM-MSCs have higher differentiation potential into corneal epithelial-like cells and have lower expression of CD119 and MHC class II than D-MSCs, which makes them a better source for the treatment of corneal opacity.

Biodegradable Inorganic-Organic Composite Artificial Bone Substitute

  • Suh, Hwal;Lee, Jong-Eun;Ahn, Sue-Jin;Lee, Choon-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.57-60
    • /
    • 1995
  • To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased.

  • PDF

Effective Delivering Method of Umbilical Cord Blood Stem Cells in Cutaneous Wound Healing (제대혈 유래 중간엽 줄기 세포를 이용한 피부 창상 치료시 세포 투여 방법에 따른 창상치유 효과의 비교)

  • Park, Sang Eun;Han, Seung Bum;Rah, Dong Kyun;Lew, Dae Hyun
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.519-524
    • /
    • 2009
  • Purpose: This study was conducted to establish the most effective method of cell therapy by comparing and analyzing the level of wound healing after various cell delivery methods. Methods: Human mesenchymal stem cells were administered using 5 different methods on full thickness skin defects which were deliberately created on the back of 4 - week old mice using a 8 mm punch. Different modes of administration, cell suspension, local injection, collagen GAG matrix seeding, fibrin, and hydrogel mix methods were used. In each experiment group, $4{\times}105$ mesenchymal stem cells were administered according to 5 deferent methods, and were not for the corresponding control group. Results: The wound healing rate was fastest in the local injection group. The wound healing rate was relatively slow in the collagen matrix group, however, the number of blood vessels or VEGF increased most in this group. Conclusion: For rapid wound healing through wound contraction, it is advantageous to administer MSC by the local injection method. For the healing process of a wide area, such as a burn, the seeding of cells to collagen matrix is thought to be effective.

Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography

  • Kim, Youngkyu;Kim, Tae-Keun;Shin, Yeonhee;Tak, Eunyoung;Song, Gi-Won;Oh, Yeon-Mok;Kim, Jun Ki;Pack, Chan-Gi
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.851-860
    • /
    • 2021
  • Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.