• Title/Summary/Keyword: Ultraviolet-B (UV-B)

Search Result 247, Processing Time 0.025 seconds

Solar Ultraviolet Irratiance Incident on a Horizontal Surface at Taegu in Korea During 1995-1998 : (II) Ultraviolet-B

  • Suh, Kyehong
    • Journal of Photoscience
    • /
    • v.6 no.1
    • /
    • pp.5-6
    • /
    • 1999
  • Solar ultraviolet-B (UV-B) irradiances incident on a horizantal surface at Taegu of Korea during 1995-1998 were calculated with 5 min averges of measuremets taken every 30 seconds by a broadband UV-B sensor. The maximum and minimum of monthly averages of daily UV-B dose were 15.89 KJ m-2 day-1 in April and 3.91KJm-2 day-1 on May 22, 1998 and 1.230W m-2 at 12 : 45, July 13, 1998, respectively. Increasing trend in annual maximum of instantaneous UV-B radiation was averaged to 12.0% per year during 1995-1998 of observation period.

  • PDF

Effects of Enhanced Ultraviolet-B Radiation on Plants (오존층 파괴에 의한 자외선 증가가 식물에 미치는 영향)

  • Hak Yoon Kim;Moon Soo Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.197-206
    • /
    • 2001
  • The depletion of stratospheric ozone is regarded as a major environmental threat to plant growth and ecosystem. The ozone depletion has caused plants to be exposed to an increased penetration of solar ultraviolet-B (UV-B) radiation in the 280-320 nm wavelength range. Enhanced UV-B radiation may have influence on plants biological functions in many aspects including inhibition of photosynthesis, DNA damage, lipid peroxidation, changes in morphology, phenology, and biomass accumulation. To cope with the damage by UV radiation, plants have evolved to have protective mechanisms, such as photorepair, accumulation of UV-absorbing compounds, leaf thickening and activation of antioxidative enzymes. The objective of this review is to address the effects of enhanced UV-B on plant growth, UV-B action mechanisms and protection and protection mechanisms in plants.

  • PDF

Characteristics of Environmental Solar Ultraviolet Irradiance

  • Sasaki, Masako;Oyanagi, Takehiko;Takeshita, Shu
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.154-157
    • /
    • 2002
  • Direct, continuous, and accurate measurements of solar ultraviolet irradiance (290-400 nm: UVR) have been carried out since 1990, by using both band-spectral ultraviolet-B (290-320 nm: UV-B) and ultraviolet-A (320-400 nm: UV-A) radiometers at Tokai University in Hiratsuka, Japan (35$^{\circ}$N, 139$^{\circ}$E). From our observations, the following findings are provided: 1) an increasing trend in solar UV -B from Oct. 1990 to Sept. 2000; 2) a regional comparison of solar UVR in Japan; 3) the distinct characteristics of UV-B and UV-A irradiance, such as diffuse property, daily and seasonal variation; and 4) human body protection against solar UVR. An increasing 10-year trend in global solar UV - B in Hiratsuka corresponded to a decrease in the total ozone amount measured at Tsukuba (36$^{\circ}$N, 140$^{\circ}$E), giving supportive evidence for a direct link between these two parameters. Furthermore, a strong correlation was found between solar UV-B and total ozone amount from results of UVR measurements at four Tokai University monitoring stations dispersed throughout Japan. Additional results revealed different diffuse properties in global solar UV and in global solar total (300-3000 nm: Total) irradiances. For example, in the global UVR, the diffuse component was dominant: about 80 % independent of weather, with more than 60 % of global UV-B, and more than 50% of global UV-A with even a cloudless clear sky. On the other hand, the portion of the diffuse in the global total irradiance was very low, less than 10 % on a cloudless clear day. Daily and seasonal variations of UV -B and UV -A irradiances were found to be quite different, because of the marked dependence of UV -B irradiance on the atmospheric ozone amount. Moreover, UV -B irradiance showed large daily and seasonal variations: the ratio between maximum and minimum irradiances was more than 5. In contrast, the variation in UV-A was small: the ratio between maximum and minimum was less than 2. Three important facts are proposed concerning solar UVR protection of the human body: 1) the personal minimal erythema dose (MED); 2) gender based difference in MED values; and 3) proper colors for UVR protective clothing.

  • PDF

A Study on the Effect on UV Exposure in Coastal Buildings (연안건축물의 자외선 노출에 따른 안전성 연구)

  • Kim, Taehwan;Uh, Jesun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.195-205
    • /
    • 2021
  • Purpose: The ultraviolet reflectance and transmittance of coastal building materials are one of the important factors of ultraviolet radiation in and out of coastal building. In this research, the ultraviolet spectral reflectance of many kinds of building materials was measured. Also, the relationships with the lightness, roughness, and chromaticity, which are surface characteristics, were reviewed and suggested. Method: In this study, according to the CIE classification, the ultraviolet region was defined as short-wavelength region UV-C(10nm~280nm), medium-wavelength region UV-B (280-315 nm), and long-wavelength region UV-A (315-400nm), and the visible light region was defined as (400nm~780nm). Spectrophotometer was used to continuously measure the reflectance from the ultraviolet region to the visible light region. Results: From the measurement results, the ultraviolet reflectance on Wood was shown to be about Visible 55-68%, UV-A* 7-12%, and UV-B 4-5%. Wall tiles are about Visible18-40%, UV-A* 8-20%, and UV-B* 7-8%. That on concrete was shown to be about Visible 37%, UV-A* 28%, and UV-B*19%. Conclusion: The ultraviolet reflectance can be estimated by visible reflectance. Also, it is important to select a variety of materials according to the application when blocking UV.

Relationship between Stratospheric Ozone and Solar Ultraviolet B Irradiance in Taegu, Korea

  • Suh, Kye-Hong;Cho, Young-Joon
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.117-119
    • /
    • 2001
  • Solar ultraviolet-B (UV-B) irradiances incident on a horizontal surface at Taegu, Korea during 1996-1998 were calculated with 5 minute averages of measurements taken every 30 seconds by a broadband UV-B sensor. The average, maximum and minimum of daily UV-B dose were 11.31, 22.04 and 3.20kJ m$^{-2}$ day$^{-1}$ , respectively, for the measuring period. Variations in stratospheric ozone concentration measured from space explain 85% of changes in the daily UV-B dose. It was expected that decrease of 50 Du in stratospheric ozone cause increase of 24.1% in daily UV-B dose in this study.

  • PDF

Effects of different UV-8 levels on the growth, photosynthesis and pigments in cucumber(Cucumis sativus L.) (UV-B 강도 변화가 오이(Cucumis sativus L.)의 생장, 광합성 및 색소에 미치는 영향)

  • Kim, Hak-Yoon;Lee, In-Jung;Shin, Dong-Hyun;Kim, Kil-Ung
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • To investigate the effects of different UV-B levels on plant growth, cucumber plants were subjected to three levels of biologically effective ultraviolet-B(UV--$B^{BE}$ radiation [daily dose : 0.03(No UV-B), 6.40(Low UV-B) and 11.30 (High UV-B) kJ $m^{-2}$, UV--$B^{BE}$] in the growth chambers for 3 weeks during the early growth period. High and low levels of UV-B irradiation drastically decreased both dry weight and leaf area, but increased specific leaf weight of cucumber. Plants subjected to UV-B resulted in 30% and 20% reduction of photosynthesis rate by high and low UV-B, respectively. However, respiration rate was not affected by the UV-B. With increasing UV-B intensity, total chlorophyll contents were decreased linearly, while the contents of flavonoid were increased linearly. These results suggest that the present levels of UV-B may affect the growth of cucumber plant compared with a UV-B-free condition. It is likely that the growth of cucumber will be affected by enhanced UV-B due to ozone depletion in the near future.

  • PDF

Effect of Ultraviolet (UV-B) on Antioxidants and Antioxidative Enzymes in Garden Balsam(Impatiens balsamina L.) (자외선(UV-B)이 봉선화(Impatiens balsamina L.)의 항산화제 및 항산화 효소에 미치는 영향)

  • Kim, Hak-Yoon
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • To investigate the effects of ultraviolet(UV-B) on growth and biochemical defense responses of plant, garden balsam (Impatiens balsamina L.) was subjected to enhanced UV-B irradiation [daily dose: 0.02 (No UV-B) and 11.34 (enhanced UV-B) kJ $m^{-2}$ ; $UV-B_{BE}$] for 3 weeks. Enhanced UV-B drastically inhibited leaf area as well as dry weight of garden balsam. The content of malondialdehyde was significantly increased by about 50% after 3 weeks of UV-B irradiation. The ratios of dehydroascorbate/ascorbate and oxidized glutathione/reduced glutathione were also considerably increased by UV-B irradiation. Three major polyamines of garden balsam leaves: putrescine, spermidine and spermine were observed. All polyamine contents were increased with UV-B irradiation. The enzyme (superoxide dismutase, ascorbate peroxidase etc.) activities of garden balsam were increased by the UV-B enhancement. Based on the results, enhanced UV-B caused oxidative stress in garden balsam and biochemical protection responses might be activated to prevent from damaging effects of oxidative stress generated by UV-B irradiation.

Effects of UV-B radiation on carotenoids, polyamines and lipid peroxidation in rice (Oryza sativa L.) leaves (UV-B가 벼잎의 carotenoid, polyamine 및 지질과산화에 미치는 영향)

  • 김학윤
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.635-642
    • /
    • 1996
  • Rice plants, cv. Koshihikari, were subjected to the biologically effective ultraviolet-B(UV-BBE) radiation {daily dose : 0.0 (control) and 11.5 (enhanced UV-B) KJ m-2} to investigate the effect of enhanced UV-B radiation on lipid peroxidation and to determine whether carotenoids and polyamines are involved in protection mechanism against enhanced UV-B radiation. Enhanced UV-B radiation significantly depressed plant dW weight. Malondialdehyde (MDA) content in rice leaves was increased by about 30% after 6 days of UV-B irradiation. Total carotenoid contents tended to slightly decrease with the UV-B irradiation, even though there was no significance. In rice leaves, 3 major polyamines, putrescine, spermidine and spermine are observed. All of the polyamine contents were increased with UV-B irradiation. The results suggest that enhanced UV- B radiation caused oxidative stress on lipids and that polyamines may serve as a biochemiral protectant against increased UV-B radiation in rice plants.

  • PDF

Effects of Ultraviolet-B Radiation on Photosynthesis in Tobacco (Nicotiana tabacum cv. Petit Havana SR1) Leaves (자외선-B 스트레스에 대한 담배 잎의 광합성 능의 변화)

  • Lee, Hae-Youn;Park, Youn-Il;Hong, Young-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2007
  • The effect of ultraviolet-B (UV-B) radiation on photosynthesis was studied by the simultaneous measurements of $O_2$ evolution and chlorophyll (Chl) fluorescence in tobacco leaves. When the tobacco leaves were teated with UV-B (1 $W{\cdot}m^{-2}$), the maximal photosynthetic $O_2$, evolution (Pmax; 4.60 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) was decreased with increasing time of UV-B treatment showing 80% decline after 4 h treatment. Chl fluorescence parameters were also affected by ultraviolet-B. Fo was increased while both Fm and Fv were decreased, resulted in the decreased of photochemical efficiency of PSII (Fv/Fm). Non-radiative dissipation of absorbed light as heat as estimated as NPQ (Fm/Fm' - 1) was also decreased with increasing time of UV-B treatment while the extent of photochemical quenching (qP) was not changed. Thus, the ratio of (1-qP)/NPQ parameter was also increased with increasing time of UV-B treatment indicating PSII is under the threat of photoinhibition. The result indicate that UV-B primarily decreases the capacity to dissipate excitation energy by trans-thylakoid pH, which in turn inhibits PSII activity.

Protective actions of Rubus coreanus ethanol extract on collagenous extracellular matrix in ultraviolet-B irradiation-induced human dermal fibroblasts

  • Bae, Ji-Young;Lim, Soon-Sung;Choi, Jung-Suk;Kang, Young-Hee
    • Nutrition Research and Practice
    • /
    • v.1 no.4
    • /
    • pp.279-284
    • /
    • 2007
  • Solar ultraviolet (UV) irradiation leads to distinct changes in the skin connective tissues by degradation of collagen, which is a major structural component in the extracellular matrix. UV irradiation induces the production of matrix metalloproteinases (MMP) capable of attacking native fibrillar collagen and responsible for inhibiting the construction of collagenous extracellular matrix. In this study, we attempted to investigate the protective actions of Rubus coreanus ethanol extract (RCE) on the MMP production and the consequent procollagen/collagen degradation in UV-B-irradiated human dermal fibroblasts. The analytical data showed that Rubus coreanus ethanol extract was mostly comprised of cyanidin 3-rutinoside. Pre-treatment of fibroblasts with this extract inhibited UV-B-induced production of MMP-1, MMP-8 and MMP-13 in dose-dependent manners. In addition, Western blot analysis and immunocytochemical staining assay revealed that RCE markedly augmented the cellular levels of procollagen/collagen declined in UV-B-exposed dermal fibroblasts. These results demonstrate that RCE blocks UV-B-induced increase of the collagen degradation by inhibiting MMP production. Thus, RCE may act as an agent inhibiting excessive dermal collagen degradation leading to the skin photoaging.