• 제목/요약/키워드: Ultraviolet Raman spectrometer

검색결과 3건 처리시간 0.018초

Development of an Ultraviolet Raman Spectrometer for Standoff Detection of Chemicals

  • Ha, Yeon Chul;Lee, Jae Hwan;Koh, Young Jin;Lee, Seo Kyung;Kim, Yun Ki
    • Current Optics and Photonics
    • /
    • 제1권3호
    • /
    • pp.247-251
    • /
    • 2017
  • In this study, an ultraviolet Raman spectrometer was designed and fabricated to detect chemical contamination on the ground. The region of the Raman spectrum that indicated the characteristics of the chemicals was $350-3800cm^{-1}$. To fabricate a Raman spectrometer operating in this range, the layout and angle of optical components of the spectrometer were designed using a grating equation. Experimental devices were configured to measure the Raman spectra of chemicals based on the fabricated Raman spectrometer. The wavenumber of the spectrometer was calibrated by measuring the Raman spectrum of polytetrafluoroethylene, $O_2$, and $N_2$. The spectral range of the spectrometer was measured to be 23.46 nm ($3442cm^{-1}$) with a resolution of 0.195 nm ($30.3cm^{-1}$) at 253.65 nm. After calibration, the main Raman peaks of cyclohexane, methanol, and acetonitrile were found to be similar to the references within a relative error of 0.55%.

수소 가스 검출용 라만 라이다 측정기의 성능 평가를 위한 기초 연구 (A Basic Study for the Performance Evaluation of a Raman LiDAR Detector for Detecting Hydrogen Gas)

  • 조원보;임윤규;김양균;박병직
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.205-211
    • /
    • 2023
  • Hydrogen gas is light and diffuses very quickly. Therefore, when a leakage accident occurs, the damage is great, so a technology that can quickly measure the leakage in the air at a long distance is needed. In order to develop hydrogen gas leaked in the atmosphere in a non-contact manner, an experiment was performed to measure hydrogen gas using a lidar technology using the Raman effect. Hydrogen Raman signals were detected using a UV LED light source, which is a Raman light source, and a spectrometer in the ultraviolet region including an optical filter in the 400-430 nm band. To develop this, a Raman lidar optical structure was designed to measure the hydrogen Raman signal at a certain distance, and the hydrogen Raman spectrum was confirmed using a standard gas to evaluate the performance of this optical structure. The linearity was found to be 0.99 using hydrogen standard gas (10, 50, 100, 500, 1,000 ppm). Accordingly, a Raman lidar capable of measuring hydrogen gas rapidly diffusing in the air in an open state was developed to improve the limitations of existing hydrogen sensors.

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity

  • Li, Lingwei;Xue, Shaolin;Xie, Pei;Feng, Hange;Hou, Xin;Liu, Zhiyuan;Xu, Zhuoting;Zou, Rujia
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.739-748
    • /
    • 2018
  • ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet-visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.