• Title/Summary/Keyword: Ultraviolet Light Source

Search Result 67, Processing Time 0.026 seconds

Degradation of Humic Acid Using N-Doped TiO2 (질소를 도핑한 TiO2를 이용한 부식산 분해)

  • So, Ji-Yang;Rhee, Dong-Seock
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.119-125
    • /
    • 2011
  • N-doped Titanium oxides were prepared by using urea as a source of nitrogen. The photoactivities of the doped $TiO_2$ were evaluated on the basis of degradation of humic acid in aqueous solutions with different light sources, ultraviolet lamp, fluorescent lamp and solar light. XRD analysis was conducted to identify the crystal structure of the synthesized photocatalysts. N-doped $TiO_2$ and $pure-TiO_2$ was anatase type. SEM results showed that spherical particles were formed, which are the characteristics of the anatase form. N doped $TiO_2$ showed higher $UV_{254}$ decrease ratio and DOC removal ratio compared to $pure-TiO_2$. The humic acid degradation reaction using the UV-A lamp and UV-C lamp was assigned to pseudo-first order reaction. For solar light, only $pure-TiO_2$ and $N-TiO_2$ exhibited the pseudo-first order reaction.

  • PDF

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF

Resistance to Weathering with Materials for Fisheries Facilities 2. Photodegradation of Plastic Materials for Floatation Unit (수산 시설용 재료의 내후성에 관한 연구 2. 부력재용 플라스틱 재료의 내후성)

  • 김태호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.140-146
    • /
    • 2001
  • In order to analyze the photodegradation of plastic materials for floats or frames of fisheries facilities, weathering experiment on 3 kinds of plastic materials like high density PE of Korea(KHDPE) and Norway(NHDPE) and high strength PVC(Hi-PVC) was carried out during 900 hours exposure by using xenon light source of weather-Ometer. The results obtained are as follows; With increasing of ultraviolet radiation(UVR) time, a remarkable losses in the mechanical properties of each specimen were observed except for the remaining strain of HDPE materials. As NHDPE lost almost 15% of its initial tensile stress during a 900 hours exposure followed by KHDPE 12% and Hi-PVC 6%. In addition, the remaining tensile stress RS(kg/$mm^2$) decreases almost linearly with the lapse of exposure time to light Y(Year) and the empirical equations of each specimen computed as follows; KHDPE : RS=2.6769-0.0003Y($r^2$=0.63) Hi-PVC : RS=5.3470-0.0003Y($r^2$=0.91) NHDPE : RS=2.4929-0.0004Y($r^2$=0.97) It was observed by scanning electron microscope that all specimens with UVR time had started to decompose and had bubbled areas and small holes.

  • PDF

A Study on the Relationship of Change of Mechanical Properties and Carbonyl Index Induced through Short-wavelength Ultraviolet Radiation (254 nm) for High Density Polyethylene (단파장 자외선(254 nm)에 노출된 고밀도 폴리에틸렌 수지의 카르보닐 지수(CI)와 기계적 물성 변화의 관계에 관한 연구)

  • Kim, Chang-Hwan;Shin, Jin-Yong
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.138-143
    • /
    • 2013
  • This paper studied the possibility to predict a mechanical property variation from changes in created carbonyl bands by irradiating the surface of high-density polyethylene with short-wavelength ultraviolet radiation of 254 nm to induce a fast chemical degradation. The meaning of this study lies in checking whether a mechanical property change with the same chemical property as the induced optical deterioration is caused by using a UVC lamp with high photon energy instead of optical deterioration via xenon arc light source and outdoor exposure test via natural sunlight requiring a long time. The mechanical strength of high-density polyethylene checked by a tensile test and a creep destruction test showed a similar tendency with CI changes. In particular, the yield strength and elongation had a close relationship with the exposure time to ultraviolet radiation. Accordingly, this paper presented a method to grasp the mechanical property change outdoors requiring a long time more fast through the relationship between the mechanical property change and the carbonyl index using a UVC lamp causing the fast surface degradation.

Measurement of the Thermal Conductivity of a Polycrystalline Diamond Thin Film via Light Source Thermal Analysis

  • Kim, Hojun;Kim, Daeyoon;Lee, Nagyeong;Lee, Yurim;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.665-671
    • /
    • 2021
  • A 1.8 ㎛ thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.

Kinetic Study of the Visible Light-Induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/TiO2-MWCNT Catalyst

  • Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1589-1595
    • /
    • 2010
  • In order to effective degradation of organic dye both under visible light or ultrasonic irradiation, the MWCNTs (multiwalled carbon nanotube) deposited with Fe and $TiO_2$ were prepared by a modified sol-gel method. The Fe/$TiO_2$-MWCNT catalyst was characterized by surface area of BET, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) and ultraviolet-visible (UV-vis) spectroscopy. The low intensity visible light and low power ultrasound was as an irradiation source and the methylene blue (MB) was choose as the model organic dye. Then degradation experiments were carried out in present of undoped $TiO_2$, Fe/$TiO_2$ and Fe/$TiO_2$-MWCNT catalysts. Through the degradation of MB solution, the results showed the feasible and potential use of Fe/$TiO_2$-MWCNT catalyst under visible light and ultrasonic irradiation due to the enhanced formation of reactive radicals as well as the possible visible light and the increase of ultrasound-induced active surface area of the catalyst. After addition of $H_2O_2$, the MB degradation rates have been accelerated, especially with Fe/$TiO_2$-MWCNT catalyst, in case of that the photo-Fenton reaction occurred. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of Fe/$TiO_2$-MWCNT catalyst.

Fabrication of High Density and High Uniformity Irradiation Light Source for Exposure Curing System Using 365 nm and 385 nm Wavelength SMD LED and High Transmittance Silicone Resin TIR Bar Type Lens (365 nm 및 385 nm SMD LED와 TIR 바형 렌즈를 이용하는 고밀도 고균일성 특성의 경화용 광원모듈 제작 )

  • Pil Hong Jeong;Beom Jin Kim;Yeong Jin Kim;Dong Gyu Jeon;Hyo Min Kim;Jae Hyeon Kim;Hyeong Min Kim;Gyu Seong Lee;Kawan Anil;Eung Ryul Park;Soon Jae Yu;Min Jun Ann;Do Won Hwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.394-399
    • /
    • 2024
  • An irradiator is developed using two UVA wavelength ranges of SMD LEDs as a curing light source. This module has dimensions of 545×111×300 mm3 and is equipped with a TIR bar-shaped lens made of PDMS silicone resin. The developed irradiator offers high uniformity, with 89% in the centerline of the horizontal axis direction, for two different wavelength ranges of 365 nm and 385 nm. The radiation intensity from the light source module shows highly directional characteristics, and the irradiator provides a maximum irradiance of 1,634 mW/cm2 at a working distance of 50 mm. During the initial 5 minutes of operation, the irradiance experiences a rapid decrease. However, this issue is addressed by optimizing the LED's current reduction characteristics and managing the Transistor's temperature rise in the constant current circuit. After continuous operation for approximately 60 minutes. The highest temperature, near the central part of the irradiating surface, reaches 69.7℃, while the lowest temperature, near the edges, is 41.1℃.

The Study of Thermal Effect Suppression and Wavelength Dependence of Azobenzene-coated FBG for UV Sensing Application (UV광 측정용 아조벤젠 코팅된 FBG의 열적 효과 제거 및 파장 의존성에 대한 연구)

  • Choi, Dong-Seok;Kim, Hyun-Kyoung;Ahn, Tae-Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.67-71
    • /
    • 2011
  • In the paper, we have demonstrated an azobenzene-coated fiber Bragg grating (FBG) for monitoring ultraviolet light (UV) intensity in remote measurement. The elasticity of the coated azobenzene polymer is changed by the UV light, which induces a center wavelength change corresponding to the change of the FBG's grating period. The wavelength shift resulting from both UV light and other light with the wavelength out of the UV range was about 0.18 nm. In order to improve the accuracy of the measurement, the center wavelength shift caused by radiant heat of the light source was sufficiently removed by using a thermal filter. The amount of the center wavelength shift was consequently reduced to 0.06 nm, compared to the result without the thermal filter. Also, the FBGs coated by using azobenzene polymer were produced by two different methods; thermal casting and UV curing. Considering temperature dependence, UV curing is more suitable than thermal casting in UV sensor application of the azobenzene-coated FBG. In addition, we have confirmed the wavelength dependence of the optical sensor by means of four different band pass filters. Thus, we found out that the center wavelength shift per unit intensity is 0.029 [arb. unit] as a maximum value at 370 nm wavelength region and that the absorption spectrum of the azobenzene polymer was very consistent with the wavelength dependence of the azobenzene-coated FBG.

Development and Operation Characteristics of XeCl Excimer Laser (방전여기 XeCl 엑시머레이저의 제작 및 동작특성)

  • Jin, Yun-Sik;Lee, Hong-Sik;Kim, Hee-Je;Rho, Young-Soo;Kim, Youn-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.268-271
    • /
    • 1993
  • Discharge pumped high power excimer laser is a very useful light source of ultraviolet region. In this paper. the design and operation characteristics of UV pre-ionized discharge pumped XeCl laser are discussed. Maximum output power of 890mJ at the efficiency of 1.4% was achieved with 35kV charging voltage, 3.4atm of total pressure and 10pps of pulse repetition rate. Optimum HCl pressure is considered to be between 2.5 and 3.5torr.

  • PDF

Replication of label-free biosensor with nano grating structures (나노 그래이팅 구조를 갖는 비표지식 바이오센서 성형에 관한 연구)

  • Cho, E.H.;Kim, B.W.;Choi, S.W.;Kim, K.H.;Sung, G.Y.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.290-293
    • /
    • 2009
  • This paper presents the development of a disposable label-free biosensor for bio molecular interaction analysis. Label-free biosensors have advantages of high performance in sensitivity and short detection time. Among various label-free systems, we introduced biosensor with nano grating structures based on white light source and spectrometer. And to develop high efficiency label-free biosensor, we suggest replicating processes satisfying required specification. We also report a system set-up to evaluate the characteristics of phenomenon shown in this biosensor system.

  • PDF