• Title/Summary/Keyword: Ultrasound technology

Search Result 493, Processing Time 0.025 seconds

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.

Anisotropic Diffusion based on Directions of Gradient (기울기 방향성 기반의 이방성 확산)

  • Kim, Hye-Suk;Kim, Gi-Hong;Yoon, Hyo-Sun;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.1-9
    • /
    • 2008
  • Thanks to the multimedia technology development, it is possible to show image representations in high quality and to process images in various ways. Anisotropic diffusion as an effective diffusion filtering among many image preprocessing methods and postprocessing methods is used in reduction of speckle noises of ultrasound images, image restoration, edge detection, and image segmentation. However, the conventional anisotropic diffusion based on a cross-kernel causes the following problems. The problem is the concentration of edges in the vertical or horizontal directions. In this paper, a new anisotropic diffusion transform based on directions of gradient is proposed. The proposed method uses the eight directional square-kernel which is an expanded form of the cross-kernel. The proposed method is to select directions of small gradient based on square-kernel. Therefore, the range of proposed diffusion is selected adaptively according to the number of the directions of gradient. Experimental results show that the proposed method can decrease the concentration of edges in the vertical or horizontal directions, remove impulse noise. The image in high quality can be obtained as a result of the proposed method.

Effect of Low Intensity Sound Wave on UC-MSC(Umbilical Cord Mesenchymal Stem Cell Growth (저강도 음파 조사가 중간엽 줄기세포 증식에 미치는 영향)

  • Kim, Sung-Min;Kang, Seung-Ho;Jeong, Jae-Hoon;Park, Jung-Keug;Kim, Soo-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.521-525
    • /
    • 2011
  • It is known that the low-intensity sound stimulation really affect to grow the cell. The cellular growth mechanism, however, does not been clearly identified even the effect on the low-intensity sound stimulation. The purpose of this study is to investigate the effect of low-intensity sound stimulation on the alveolar UC-MSC proliferation. Before the low-intensity sound stimulation is applied, the UC-MSC are cultured for 24 hours to facilitate their attachments. The cells are divided into two groups. And each was exposed to a medium with or without the low-intensity ultrasound stimulation at 71dB intensity level. The UC-MSC are again divided into three treatment groups of group 1, 2, and 3 and exposed to a frequency at 50Hz, 100Hz, and 1000Hz, respectively. In the results, it is investigated that the growth rates of UC-MSC for the stimulated groups were higher than those of control groups. In 1000Hz frequency, the number of UC-MSC cell is significantly higher than control groups (p>0.05). We would put the hypothesis that the cell growth could be enhanced by an appropriate low-intensity sound stimulation.

Effect of Addition of Tween 20 and Glycerol in Recombinant Escherichia Coli Culture on Organophosphorus Hydrolase (OPH) Production for Biodrgradation of Coumaphos Insecticide (Coumaphos 살충제의 생분해를 위하여 재조합 대장균 배양에서 Tween 20과 Glycerol 첨가가 유기인분해 효소 생산에 미치는 영향)

  • Choi, Suk Soon;Seo, Sang Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.501-505
    • /
    • 2007
  • Organophosphorus hydrolase (OPH) expressed from recombinant Escherichia coli was used to biodegrade organophosphate insecticide coumaphos which has a very high toxicity in mammalian cells. To improve the productivity of OPH, the effects of nonionic surfactants (Tween 20, PEG 1000) and organic solvents, such as glycerol, propanol, and ethanol, were investigated in the strain culture. The maximum OPH was produced when the 0.25% of Tween 20 and 0.5% of glycerol were added to the medium. As the OPH obtained from disrupt-cell process by ultrasound treatment was used, the biodegradation efficiencies of 0.2, 0.5, 1.0 and 2.0 mM coumaphos were 100, 88, 84 and 78%, respectively. A novel method developed in this study could be applied to the biodetoxification technology in the contaminated region with various coumaphos concentration.

Depolymerization of Alginates by Hydrogen Peroxide/Ultrasonic Irradiation (과산화수소/초음파를 이용한 알지네이트의 저분자화)

  • Choi, Su-Kyoung;Choi, Yoo-Sung
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.444-450
    • /
    • 2011
  • A high molecular weight natural sodium alginate (HMWSAs) was depolymerized by hydrogen peroxide ($H_2O_2$) with ultrasonic irradiation. The effects of the reaction conditions such as reaction temperature, reaction time, hydrogen peroxide concentration and ultrasonic irradiation time on the molecular weights and the end groups of the depolymerized alginates were investigated. It was revealed that depolymerization occurred through the breakage of 1,4-glycosidic bonds of sodium alginate and the formation of formate groups on the main chain under certain conditions. The changes in molecular weight were monitored by GPC-MALS. The molecular weight of 2 wt% alginate solution decreased from 450 to 15.9 kDa for 0.5 hrs at 50 $^{\circ}C$ under an appropriate ultrasonic irradiation. The PDI(polydispersity index)s of the alginate depolymerized in this study were considerably narrow in comparison with those obtained from the other chemical degradation method. The PDIs were in the range of 1.5~2.5 in any reaction conditions employed in this study.

A Study on Control of Drone Swarms Using Depth Camera (Depth 카메라를 사용한 군집 드론의 제어에 대한 연구)

  • Lee, Seong-Ho;Kim, Dong-Han;Han, Kyong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1080-1088
    • /
    • 2018
  • General methods of controlling a drone are divided into manual control and automatic control, which means a drone moves along the route. In case of manual control, a man should be able to figure out the location and status of a drone and have a controller to control it remotely. When people control a drone, they collect information about the location and position of a drone with the eyes and have its internal information such as the battery voltage and atmospheric pressure delivered through telemetry. They make a decision about the movement of a drone based on the gathered information and control it with a radio device. The automatic control method of a drone finding its route itself is not much different from manual control by man. The information about the position of a drone is collected with the gyro and accelerator sensor, and the internal information is delivered to the CPU digitally. The location information of a drone is collected with GPS, atmospheric pressure sensors, camera sensors, and ultrasound sensors. This paper presents an investigation into drone control by a remote computer. Instead of using the automatic control function of a drone, this approach involves a computer observing a drone, determining its movement based on the observation results, and controlling it with a radio device. The computer with a Depth camera collects information, makes a decision, and controls a drone in a similar way to human beings, which makes it applicable to various fields. Its usability is enhanced further since it can control common commercial drones instead of specially manufactured drones for swarm flight. It can also be used to prevent drones clashing each other, control access to a drone, and control drones with no permit.

Ultrasonic Cavitation Effect Observation Using Bubble Cloud Image Analysis (기포군 영상분석을 통한 초음파 캐비테이션 현상의 변화 관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Kim, Jin-Su;Kang, Jung-Hoon;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.124-130
    • /
    • 2011
  • In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.

The exfoliation of irradiated nuclear graphite by treatment with organic solvent: A proposal for its recycling

  • Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guarcini, Tiziana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1037-1040
    • /
    • 2019
  • For the past 50 years, graphite has been widely used as a moderator, reflector and fuel matrix in different kinds of gas-cooled reactors. Resulting in approximately 250,000 metric tons of irradiated graphite waste. One of the most significant long-lived radioisotope from graphite reactors is carbon-14 ($^{14}C$) with a half-life of 5730 years, this makes it a huge concern for deep geologic disposal of nuclear graphite (NG). Considering the lifecycle of NG a number of waste management options have been developed, mainly focused on the achievement the radiological requirements for disposal. The existing approaches for recycling depend on the cost to be economically viable. In this new study, an affordable process to remove $^{14}C$ has been proposed using samples taken from the Nuclear Power Plant in Latina (Italy) which have been used to investigate the capability of organic and inorganic solvents in removing $^{14}C$ from exfoliated nuclear graphite, with the aim to design a practicable approach to obtain graphite for recycling or/and safety disposed as L& LLW.

ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells

  • Zheng, Fei-Meng;Chen, Wang-Bing;Qin, Tao;Lv, Li-Na;Feng, Bi;Lu, Yan-Ling;Li, Zuo-Quan;Wang, Xiao-Chao;Tao, Li-Ju;Li, Hong-Wen;Li, Shu-You
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.566-571
    • /
    • 2019
  • Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid ${\beta}$-oxidation. Deregulation of ACOX1 has been linked to peroxisomal disorders and carcinogenesis in the liver. Currently, there is no information about the function of ACOX1 in lymphoma. In this study, we found that upregulation of ACOX1 promoted proliferation in lymphoma cells, while downregulation of ACOX1 inhibited proliferation and induced apoptosis. Additionally, overexpression of ACOX1 increased resistance to doxorubicin, while suppression of ACOX1 expression markedly potentiated doxorubicin-induced apoptosis. Interestingly, downregulation of ACOX1 promoted mitochondrial location of Bad, reduced mitochondrial membrane potential and provoked apoptosis by activating caspase-9 and caspase-3 related apoptotic pathway. Overexpression of ACOX1 alleviated doxorubicin-induced activation of caspase-9 and caspase-3 and decrease of mitochondrial membrane potential. Importantly, downregulation of ACOX1 increased p73, but not p53, expression. p73 expression was critical for apoptosis induction induced by ACOX1 downregulation. Also, overexpression of ACOX1 significantly reduced stability of p73 protein thereby reducing p73 expression. Thus, our study indicated that suppression of ACOX1 could be a novel and effective approach for treatment of lymphoma.

Genetic Diversity of Hard Ticks (Acari: Ixodidae) in the South and East Regions of Kazakhstan and Northwestern China

  • Yang, Yicheng;Tong, Jin;Ruan, Hongyin;Yang, Meihua;Sang, Chunli;Liu, Gang;Hazihan, Wurelihazi;Xu, Bin;Hornok, Sandor;Rizabek, Kadyken;Gulzhan, Kulmanova;Liu, Zhiqiang;Wang, Yuanzhi
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.103-108
    • /
    • 2021
  • To date, there is no report on the genetic diversity of ticks in these regions. A total of 370 representative ticks from the south and east regions of Kazakhstan (SERK) and Xinjiang Uygur Autonomous Region (XUAR) were selected for molecular comparison. A fragment of the mitochondrial cytochrome c oxidase subunit I (cox1) gene, ranging from 631 bp to 889 bp, was used to analyze genetic diversity among these ticks. Phylogenetic analyses indicated 7 tick species including Hyalomma asiaticum, Hyalomma detritum, Hyalomma anatolicum, Dermacentor marginatus, Rhipicephalus sanguineus, Rhipicephalus turanicus and Haemaphysalis erinacei from the SERK clustered together with conspecific ticks from the XUAR. The network diagram of haplotypes showed that i) Hy. asiaticum from Almaty and Kyzylorda Oblasts together with that from Yuli County of XUAR constituted haplogroup H-2, and the lineage from Chimkent City of South Kazakhstan was newly evolved; and ii) the R. turanicus ticks sampled in Israel, Almaty, South Kazakhstan, Usu City, Ulugqat and Baicheng Counties of XUAR were derivated from an old lineage in Alataw City of XUAR. These findings indicate that: i) Hy. asiaticum, R. turanicus and Ha. erinacei shared genetic similarities between the SERK and XUAR; and ii) Hy. marginatum and D. reticulatus show differences in their evolution.