• Title/Summary/Keyword: Ultrasonic velocities

Search Result 123, Processing Time 0.019 seconds

Physical Properties of Liquid Ammonia Wood for Bending (휨가공을 위한 액체암모니아 처리재의 물리적 성질)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.52-60
    • /
    • 2003
  • The physical properties of small hardwood and softwood specimens treated with liquid ammonia were investigated. The specimens treated for 4 or 18 hours were compared with the controls. The EMCs of the liquid ammonia treated specimens were higher than those of the controls when conditioned at the same humidities. However once oven-dried they didn't show any significant differences in EMCs. With the increase of liquid ammonia treatment time specimens shrank in radial and tangential directions, but not in longitudinal direction. As liquid ammonia treatment time increased the ultrasonic velocities of specimens decreased and their densities increased, thus their dynamic MOEs decreased. For chestnut specimens the presteamed were more plasticized than the liquid ammonia treated. Incising on the surfaces of specimens didn't improve liquid ammonia permeability in both hardwoods and softwoods. Liquid ammonia treatment was very effective for plasticizing 5 mm thick softwoods. Relative dielectric constants and thermal conductivities were measured with both liquid ammonia treated and control specimens.

Integrity evaluation of grouting in umbrella arch methods by using guided ultrasonic waves (유도초음파를 이용한 강관보강다단 그라우팅의 건전도 평가)

  • Hong, Young-Ho;Yu, Jung-Doung;Byun, Yong-Hoon;Jang, Hyun-Ick;You, Byung-Chul;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.187-199
    • /
    • 2013
  • Umbrella arch method (UAM) used for improving the stability of the tunnel ground condition has been widely applied in the tunnel construction projects due to the advantage of obtaining both reinforcement and waterproof. The purpose of this study is to develop the evaluation technique of the integrity of bore-hole in UAM by using a non-destructive test and to evaluate the possibility of being applied to the field. In order to investigate the variations of frequency depending on grouted length, the specimens with different grouted ratios are made in the two constraint conditions (free boundary condition and embedded condition). The hammer impact reflection method in which excitation and reception occur simultaneously at the head of pipe was used. The guided waves generated by hitting a pipe with a hammer were reflected at the tip and returned to the head, and the signals were received by an acoustic emission (AE) sensor installed at the head. For the laboratory experiments, the specimens were prepared with different grouted ratios (25 %, 50 %, 75 %, 100 %). In addition, field tests were performed for the application of the evaluation technique. Fast Fourier transform and wavelet transform were applied to analyze the measured waves. The experimental studies show that grouted ratio has little effects on the velocities of guided waves. Main frequencies of reflected waves tend to decrease with an increase in the grouted length in the time-frequency domain. This study suggests that the non-destructive tests using guided ultrasonic waves be effective to evaluate the bore-hole integrity of the UAM in the field.

Application of geophysical exploration methods for safety diagnosis of the basement of stone pagoda (지구물리탐사 방법의 석탑지반 안전진단에의 적용)

  • Suh, Man-Cheol;Oh, Jin-Yong;Kim, Ki-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.70-83
    • /
    • 2004
  • The safety diagnosis of cultural assets is Primarily focused on its non-destructiveness. Research on the nondestructive diagnosis and conservation of masonry cultural heritage is the key which is considered by technologic kernel. Geophyscial Prospecting as nondestructive diagnostic technology plays an important role in the characterization of the foundation of stone pagodas. It is natural that understanding of shallow subsurface condition beneath them is essential for their structural safety diagnosis. As an example, the nondestructive geophysical methods were applied to two three-story stone pagodas, Seokgatap (height 10.8 m, width 4.4 m, weight 82.3 ton) and Dabotap (height 10.4 m, width 7.4 m, weight 123.2 ton) which were built in 791 at Bulkuksa temple. An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process and are slightly leaning, which will threaten their stability At the base part of Dabotap, an offset of the stone alignment is also observed. Direct measurements of ultrasonic velocities was introduced for the mechanical properties of the stone The velocity ranges of ultrasonic waves for Dabotap and Seokgatap are 1217${\~}$4403 m/s and 584${\~}$5845 m/s, respectively, and the estimated averages of the uniaxial compressive strength are 463 kg/$cm^2$ and 409 kg/$cm^2$, respectively. Site characteristics, around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of ground-penetrating radar, On the basis of the higher velocity structure, the site of Seokgatap appears to have solider stability than the Seokgatap site. Near the pagodas, higher(up to 2200 $\Omega$m) resistivity is present whereas their outskirts have as low as 200 $\Omega$m. By the combined results of each geophyscial methods, the subsurface boundaries of two stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ${\~}$4 m, whereas the Seokgatap site is the 8 ${\times}$ 10 m rectangle with the depth of 3 m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ${\~}8 ton/m^2$. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition which Is the possible cause of the slightly leaning pagodas toward the NNW.

  • PDF

Dependencies of Group Velocity and Attenuation Coefficient on Structural Properties in Copper and Nickel Foams with an Open-Celled Structure as Trabecular-Bone-Mimicking Phantoms (해면질골 팬텀으로서 개포된 구조를 갖는 구리폼 및 니켈폼에서 구조적 특성에 대한 군속도 및 감쇠계수의 의존성)

  • Kim, Seong-Il;Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.158-166
    • /
    • 2011
  • In the present study, copper and nickel foams with an open-celled structure as trabecular-bone-mimicking phantoms were used to investigate the dependencies of group velocity and attenuation coefficient on structural properties such as trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp) in trabecular bone. The group velocity and attenuation coefficient of the copper and nickel foams were measured by a through-transmission method in water, using a pair of broadband, unfocused transducers with a diameter of 12.7 mm and a center frequency of 1.0 MHz. The separation of the Biot's fast and slow waves was consistently observed in the ultrasonic signals transmitted through the copper and nickel foams. The group velocities of the copper and nickel foams showed highly positive correlations with Tb.Th and Tb.Sp. The attenuation coefficient of the copper foam showed a highly negative correlation with Tb.Th and Tb.Sp, whereas that of the nickle foam showed a highly positive correlation with Tb.Th and Tb.Sp. These results advance our understanding of those previously reported by other researchers using trabecular bone samples or phantoms.

Quantitative Evaluation for Effectiveness of Consolidation Treatment by using the Ethylsilicate for the Namsan Granite in Gyeongju (경주 남산 화강암을 대상으로 에틸실리케이트를 이용한 강화 처리에 대한 정량적 평가)

  • Han, Min-Su;Lee, Jang-Jon;Jun, Byung-Kyu;Song, Chi-Young;Kim, Sa-Dug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.183-192
    • /
    • 2008
  • Stone cultural heritages in Korea are mostly situated out door without any notable protection thus there are severe damage from chemical and biological weathering. This in turn, causes deformation and structural damage. To counter act this problem and to increase durability, various kinds of conservation materials are used in the conservation and restoration treatment. However, there are not many practical and technological experiment done on this subject. This paper attempts quantitative evaluation of effectiveness of ethylsilicate based resin for Namsan granite in Gyeongju. When two different materials with different ethylsilicate concentration were compared, the result indicated decrease of absorption and porosity with increase of ultrasonic velocities, uniaxial compressive strength, elastic constant, tensile strength and Poisson's ratio. In addition, comparison of physical characteristic of the conservation material resulted favorably toward ones with higher concentration of ethylsilicate. This is due to the ethylsilicates characteristic to fill the internal pores of stone. There is discolouration of stone surface after treatment with conservation material. This was more prominent with the product of higher ethylsilicate concentration.

Guidedwave-induced rockbolt integrity using Fourier and wavelet transforms (유도파에 대한 푸리에 및 웨이브렛 변환을 이용한 록볼트의 건전도 평가)

  • Lee, In-Mo;Kim, Hyun-Jin;Han, Shin-In;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 2007
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these types of structures. The purpose of this study is the evaluation of rock bolt integrity using Fourier and wavelet transforms of the guided ultrasonic waves. After five rock bolt specimens with various defect ratios are embedded into a large scale concrete block, guided waves are generated by a PZT (lead zirconate titanate) element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the frequency domain using the Fourier transform, and in the time-frequency domain using the wavelet transform based on a Gabor wavelet. The spectrum obtained from the Fourier transform shows that a portion of high frequency contents increases with increase in the defect ratio. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with the defect ratio. This study shows that the spectrum ratio and the energy velocity may be indicators fur the evaluation of rock bolt integrity.

  • PDF

Surface Wave Method: Focused on Active Method (표면파 탐사: 능동 탐사법을 중심으로)

  • Kim, Bitnarae;Cho, Ahyun;Cho, Sung Oh;Nam, Myung Jin;Pyun, Sukjoon;Hayashi, Koich
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.210-224
    • /
    • 2019
  • Surface wave (SW) surveys, which have been applied to numerous application fields ranging from micro-scale ultrasonic analysis to geological scale analysis, are widely used to monitor near-surface stability. The survey method is basically made through analysis on dispersion of SW propagating along the earth surface, in order to delineate shear velocity structure of subsurface. SW survey data are inverted with assuming one-dimensional (1D) layered-earth in order to recover shear wave velocities of each layer, after being analyzed to make the dispersion curve that shows phase velocity of SW with respect to frequency. This study reviews surface wave surveys with explaining the basic theory including the characteristics of dispersion and the procedure of general data processing. Even though surface wave surveys can be categorized into active and passive methods, this paper focuses only on active surface wave methods which includes continuous SW (CSW), spectral analysis of SW (SASW) and multichannel analysis of SW (MASW). Passive method will be reviewed in the subsequent paper.

Blood Flow Simulation in Bifurcated Geometry of Abdominal and Iliac Arteries Based on CT Images (CT영상에 기반한 복부대동맥과 장골동맥 분기관 모델의 혈류유동 해석)

  • Hong Y. S.;Kim M. C.;Kang H. M.;Lee C. S.;Kim C. J.;Lee J. M.;Kim D. S.;Lee K.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.497-503
    • /
    • 2004
  • Numerical simulation of blood flow has been conducted based on real vessel geometries generated front DICOM medical images of abdominal and iliac bifurcated arteries of a healthy man. A program was developed to read cross sectional images of the three dimensional arteries and smoothly extract boundary coordinates of vessels. Commercial programs were employed for mesh generation and flow simulation. Pressures, velocities, and flow distributions were found to lie within normal physiological ranges. Peak velocity measured in the iliac artery by ultrasound was 20% smaller than that obtained by simulation. The trend of velocity variation in a cardiac cycle was fairly similar between the simulation and the ultrasonic measurements. Simulation based on real vessel geometry of individual patient provides information on pressure, velocity, and its distribution in the diseased arteries or arteries to be surgically treated. The results of simulation may help surgeons to better understand hemodynamic status and surgical need of the patient by revealing variation of the hemodynamic parameters. Futhermore, they may serve as basic data for surgical treatment of arteries. This research is expected to develop to a program in the future that early diagnose atherosclerosis by showing distribution of a hemodynamic index closely related to atherosclerosis in arteries.

Long-Period Wave Oscillations in Sokcho Harbor and Cheongcho Lagoon (1. Field Measurements and Data Analyses) (속초항과 청초호의 부진동 특성 (1. 현장관측과 자료 분석))

  • 정원무;박우선;김규한;채장원;김지희
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.51-64
    • /
    • 2002
  • To investigate long-period wave responses in Sokcho Harbor and Cheongcho lagoon, field measurements were made for long-and short-period waves and current velocities using a Directional Waverider, a ultrasonic-type wave gauge, four pressure-type wave gauges, and a current meter. From the data analysis, it was found that the Helmholtz resonant periods of Sokcho Harbor and Cheongcho lagoon are about 13.6 and 54.5 minutes, respectively, and the dominant period of wave induced current in the passage between Sokcho Harbor and Cheongcho lagoon is about 55.2 minutes which depends on Helmholtz resonant condition of the Cheongcho lagoon. It was also found that the energy level of the far-infra-gravity waves during storm conditions is very high compared with that during calm sea conditions. To investigate relationships between far-infra-gravity waves and short-period waves at offshore station, regression analyses were carried out especially for 1) heights, 2) periods, 3) direction and height, 4) height and period between short-and far-infra-gravity waves, respectively. The results showed that the long-period wave height is highly correlated with the short-period wave height. However, no special trend was found for the other relations. In the future far-infra-gravity wave heights on return period around Sokcho Harbor region can be suggested by using extreme value analyses of long term measured data.

Rock Bolt Integrity Assessment in Time-Frequency Domain : In-situ Application at Hard Rock Site (유도파를 이용한 시간-주파수 영역 해석을 통한 록볼트 건전도 실험의 경암지반 현장 적용성 평가)

  • Lee, In-Mo;Han, Shin-In;Min, Bok-Ki;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.5-12
    • /
    • 2009
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these structures. The purpose of this study is the evaluation of rock bolt integrity using wavelet transforms of the guided ultrasonic waves by using transmission test in the field. After several rock bolts with various defect ratios are embedded into a large scale concrete block and rock mass, guided waves are generated by a piezo disk element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the time-frequency domain using the wavelet transform based on a Gabor wavelet. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with an increase in the defect ratio. The suitable curing time for the evergy velocity analysis is proposed by the laboratory test, and in-situ tests are performed in two tunnelling sites to verify the applicability of rock bolt integrity tests performed after proposed curing time. This study proves that time-frequency domain analysis is an effective tool for the evaluation of the rock bolt integrity.