DOI QR코드

DOI QR Code

해면질골 팬텀으로서 개포된 구조를 갖는 구리폼 및 니켈폼에서 구조적 특성에 대한 군속도 및 감쇠계수의 의존성

Dependencies of Group Velocity and Attenuation Coefficient on Structural Properties in Copper and Nickel Foams with an Open-Celled Structure as Trabecular-Bone-Mimicking Phantoms

  • 투고 : 2011.01.14
  • 심사 : 2011.03.09
  • 발행 : 2011.04.30

초록

본 연구에서는 해면질골에서 해면소주 두께 (Tb.Th) 및 해면소주 간격 (Tb.Sp)과 같은 구조적 특성에 대한 군속도 및 감쇠계수의 의존성을 살펴보기 위하여 해면질골 팬텀으로서 개포된 구조를 갖는 8개의 구리폼 및 니켈폼이 이용되었다. 구리폼 및 니켈폼의 군속도 및 감쇠계수는 12.7 mm의 직경 및 1.0 MHz의 중심 주파수를 갖는 한 쌍의 광대역, 비집속형 초음파 변환기와 함께 수중에서 투과법을 이용하여 측정되었다. 구리폼 및 니켈폼을 투과한 초음파 신호에서 Biot의 fast wave 및 slow wave가 분리되어 나타나는 것을 관찰할 수 있었다. 구리폼 및 니켈폼의 군속도는 Tb.Th 및 Tb.Sp와 모두 높은 양의 상관관계를 나타냈다. 구리폼의 감쇠계수는 Tb.Th 및 Tb.Sp와 높은 음의 상관관계를 나타내는 반면에 니켈폼의 감쇠계수는 Tb.Th 및 Tb.Sp와 높은 양의 상관관계를 나타냈다. 이와 같은 결과는 해면질골 샘플 또는 팬텀을 이용한 다른 연구자들에 의하여 보고된 결과를 이해하는데 도움이 된다.

In the present study, copper and nickel foams with an open-celled structure as trabecular-bone-mimicking phantoms were used to investigate the dependencies of group velocity and attenuation coefficient on structural properties such as trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp) in trabecular bone. The group velocity and attenuation coefficient of the copper and nickel foams were measured by a through-transmission method in water, using a pair of broadband, unfocused transducers with a diameter of 12.7 mm and a center frequency of 1.0 MHz. The separation of the Biot's fast and slow waves was consistently observed in the ultrasonic signals transmitted through the copper and nickel foams. The group velocities of the copper and nickel foams showed highly positive correlations with Tb.Th and Tb.Sp. The attenuation coefficient of the copper foam showed a highly negative correlation with Tb.Th and Tb.Sp, whereas that of the nickle foam showed a highly positive correlation with Tb.Th and Tb.Sp. These results advance our understanding of those previously reported by other researchers using trabecular bone samples or phantoms.

키워드

참고문헌

  1. 김덕윤, "골밀도 측정의 올바른 임상적용," 대한골다공증학회지, 38권, 4호, 275-281쪽, 2004.
  2. 이강일, "해면질골에서 위상속도 및 감쇠계수 측정에 의한 구조적 특성 평가," 한국음향학회지, 28권, 7호, 661-667쪽, 2009.
  3. 김성일, 최민주, 이강일, "뼈 모사체에서 다공율 및 구조에 대한 음속 및 감쇠계수의 변화," 한국음향학회지, 29권, 6호, 388-394쪽, 2010.
  4. C. F. Njeh, D. Hans, T. Fuerst, C. C. Gluer, and H. K. Genant, Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status, Martin Dunitz, London, 1999.
  5. K. Mizuno, H. Somiya, T. Kubo, M. Matsukawa, and T. Otani, "Influence of cancellous bone microstructure on two ultrasonic wave propagatioin in bovine femur: An in vitro study," J. Acoust. Soc. Am., vol. 128, no. 5, pp. 3181-3189, 2010. https://doi.org/10.1121/1.3493444
  6. Wei Lin, Yi Xia, and Yi-Xian Qin, "Characterization of the trabecular bone structure using frequency modulated ultrasound pulse," J. Acoust. Soc. Am., vol. 125, no. 6, pp. 4071-4077, 2009. https://doi.org/10.1121/1.3126993
  7. P. H. F. Nicholson, R. Muller, X. G. Cheng, P. Ruegsegger, G. Van der perre, J. Dequeker, and S. Boonen, "Quantitative ultrasound and trabecular architecture in the human calcaneus," J. Bone Miner. Res, vol. 16, no. 10, pp. 1886-1892, 2001. https://doi.org/10.1359/jbmr.2001.16.10.1886
  8. 한국산업부 기술표준원, "파인세라믹스-파인세라믹스 소결체의 밀도 및 겉보기 기공율 시험방법," KS L ISO 18754, pp. 1-11, 2007.
  9. K. A. Wear, "Comparison of measurements of phase velocity in human calcaneus to Biot theory," J. Acoust. Soc. Am., vol. 117, no. 5, pp. 3319-3324, 2005. https://doi.org/10.1121/1.1886388
  10. K. A. Wear, "Measurement of phase velocity and group velocity in human calcaneus," Ultrasound Med Biol., vol. 26, no. 4, pp. 641-646, 2000. https://doi.org/10.1016/S0301-5629(99)00172-6
  11. K. I. Lee and M. J. Choi, "Phase velocity and normalized broadband ultrasonic attenuation in polyacetal cuboid bonemimicking phantoms," J. Acoust. Soc. Am., vol. 121, no. 6, pp. EL263-EL269, 2007. https://doi.org/10.1121/1.2719046
  12. M. A. Biot, "Theory of propagation of elastic waves in a fluid-saturated porous solid," J. Acoust. Soc. Am., vol. 28, no. 2, pp. 168-178, 1956. https://doi.org/10.1121/1.1908239
  13. E. R. Hughes, T. G. Leighton, G. W. Petley, P. R. White, R.C. Chivers, "Estimation of critical and viscous frequencies for Biot theory in cancellous bone," Ultrasonics, vol. 41, no. 5, pp. 365-368, 2003. https://doi.org/10.1016/S0041-624X(03)00107-0
  14. A. Hosokawa and T. Otani, "Ultrasonic wave propagation in bovine cancellous bone," J. Acoust. Soc. Am., vol. 101, no. 1, pp. 558-562, 1997. https://doi.org/10.1121/1.418118
  15. A. Hosokawa, "Effect of porosity distribution in the propagation direction on ultrasound wave through cancellous bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 6, pp. 1320-1328, 2010. https://doi.org/10.1109/TUFFC.2010.1552
  16. K. Mizuno, M. Matukawa, T. Otani, M. Takada, I. Mano, and T. Tsujimoto, "Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 7, pp. 1480-1487, 2008. https://doi.org/10.1109/TUFFC.2008.823
  17. S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. laugier, "Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure," Bone, vol. 30, no. 1, pp. 229-237, 2002. https://doi.org/10.1016/S8756-3282(01)00650-0
  18. K. A. Wear, "The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bonemimicking phantoms," J. Acoust. Soc. Am., vol. 118, no. 2, pp. 1186-1192, 2005. https://doi.org/10.1121/1.1940448
  19. K. A. Wear, "Mechanisms for attenuation in cancellous bonemimicking phantoms", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 11, pp. 2418-2424, 2008. https://doi.org/10.1109/TUFFC.949
  20. K. A. Wear, "Ultrasonic attenuation in parallel-nylon-wire cancellous-bone-mimicking phantoms," J. Acoust. Soc. Am., vol. 124, no. 6, pp. 4042-4046, 2008. https://doi.org/10.1121/1.2998784

피인용 문헌

  1. Correlations between Acoustic Properties and Bone Mineral Density in Bovine Femoral Trabecular Bone In Vitro vol.31, pp.4, 2012, https://doi.org/10.7776/ASK.2012.31.4.244
  2. Effect of Cortical Bone on Acoustic Properties of Trabecular Bone in Bovine Femur In Vitro vol.32, pp.2, 2013, https://doi.org/10.7776/ASK.2013.32.2.181
  3. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density vol.32, pp.5, 2012, https://doi.org/10.7779/JKSNT.2012.32.5.502