• Title/Summary/Keyword: Ultrasonic image

Search Result 414, Processing Time 0.033 seconds

CT Image Reconstruction of Wood Using Ultrasound Velocities I - Effects of Reconstruction Algorithms and Wood Characteristics -

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.21-28
    • /
    • 2005
  • For the proper conservation of wooden cultural properties, non-destructive evaluation (NDE) method, which can be used to quantitatively evaluate the internal state of wood members, are needed. In this study, an ultrasonic CT system composed of portable devices was attempted, and the capacity of this system was verified by reconstructing the CT images for two phantoms and two artificially defected specimens. Results from this study showed that the sizes of detected defects were enlarged and the shapes were distorted on the CT images. Also, the positions were shifted somewhat toward the surface of specimen, which is regarded due to the anisotropic property of wood. Compared to the filtered back-projection method, SIRT (simultaneous iterative reconstruction technique) method was determined to be more efficient as the algorithm of image reconstruction for wood. A new ultrasonic CT system is thought to be used as a NDE method for wood. However wood characteristics and wave diffraction within wood made it difficult to accurately evaluate the size, shape and position of defects. To improve the quality of CT image of wood, more research including the relationship between wood and ultrasound is needed, and wood properties should be taken into consideration on the image reconstruction algorithm.

A Study on Ultrasonic Evaluation of Material Defects in Carbon/carbon Composites

  • Im, Kwang-Hee;David K. Hsu;Cha, Cheon-Seok;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1652-1663
    • /
    • 2002
  • It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity because manufacturing of carbon/carbon (C/C) composites requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon composites for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of C/C composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity These results were compared with that obtained by dry-coupling ultrasonics. Pulse-echo C-scans was used to image near-surface material property anomalies such as the placement of spacers between disks during CVI. Also, optical micrograph had been examined on the surface of C/C composites using a destructive way.

One-Sided Nondestructive Evaluation of Back-Side Wedge By Using Ultrasonic Sound (초음파를 이용한 배면웨지의 일방향 비파괴 특성평가)

  • Jeong, Jong-An;Hsu, David K.;Im, Kwang-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.773-777
    • /
    • 2011
  • Conventional ultrasonic thickness measurement is to be considered as the assumption that the ultrasonic velocity is known. In actual applications the velocity is often not well known and access is often limited to one side. This paper aims at determining the ultrasonic velocity and thickness of plates with parallel or wedged surfaces using contact measurements made on one surface only. For wedged plates the thickness at one point and the wedge angle are determined. Equations are used for determining the ultrasonic velocity, thickness and wedge angle of the plate based on the times-of-flight measured by two contact transducers coupled to one surface. The time-of-flight of the obliquely reflected longitudinal wave echo was measured as a function of the separation between the two transducers. In addition, a simulation was made for comparing the experimental data and a FEM image. Experiments and simulations were performed on flat and wedged plates of aluminium materials; the calculated results for the unknown quantities are generally agreed with them to some degree.

Air-coupled ultrasonic tomography of solids: 1 Fundamental development

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. But practical application of ultrasonic tomography to solids is often limited by time consuming transducer coupling. Air-coupled ultrasonic measurements may eliminate the coupling problem and allow for more rapid data collection and tomographic image construction. This research aims to integrate recent developments in air-coupled ultrasonic measurements with current tomography reconstruction routines to improve testing capability. The goal is to identify low velocity inclusions (air-filled voids and notches) within solids using constructed velocity images. Finite element analysis is used to simulate the experiment in order to determine efficient data collection schemes. Comparable air-coupled ultrasonic signals are then collected through homogeneous and isotropic solid (PVC polymer) samples. Volumetric (void) and planar (notch) inclusions within the samples are identified in the constructed velocity tomograms for a variety of transducer configurations. Although there is some distortion of the inclusions, the experimentally obtained tomograms accurately indicate their size and location. Reconstruction error values, defined as misidentification of the inclusion size and position, were in the range of 1.5-1.7%. Part 2 of this paper set will describe the application of this imaging technique to concrete that contains inclusions.

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.

Ultrasonic Flaw Detection in Composite Materials Using SSP-MPSD Algorithm

  • Benammar, Abdessalem;Drai, Redouane
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1753-1761
    • /
    • 2014
  • Due to the inherent inhomogeneous and anisotropy nature of the composite materials, the detection of internal defects in these materials with non-destructive techniques is an important requirement both for quality checks during the production phase and in service inspection during maintenance operations. The estimation of the time-of-arrival (TOA) and/or time-of-flight (TOF) of the ultrasonic echoes is essential in ultrasonic non-destructive testing (NDT). In this paper, we used split-spectrum processing (SSP) combined with matching pursuit signal decomposition (MPSD) to develop a dedicated ultrasonic detection system. SSP algorithm is used for Signal-to-Noise Ratio (SNR) enhancement, and the MPSD algorithm is used to decompose backscattered signals into a linear expansion of chirplet echoes and estimate the chirplet parameters. Therefore, the combination of SSP and MPSD (SSP-MPSD) presents a powerful technique for ultrasonic NDT. The SSP algorithm is achieved by using Gaussian band pass filters. Then, MPSD algorithm uses the Maximum Likelihood Estimation. The good performance of the proposed method is experimentally verified using ultrasonic traces acquired from three specimens of carbon fibre reinforced polymer multi-layered composite materials (CFRP).

Map building for path planning of an autonomous mobile robot using an ultrasonic sensor (초음파센서를 이용한 자율 주행 로봇의 경로 계획용 지도작성)

  • 이신제;오영선;김학일;김춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.900-903
    • /
    • 1996
  • The objective of this paper is to make the weighted graph map for path planning using the ultrasonic sensor measurements that are acquired when an A.M.R (autonomous mobile robot) explores the unknown circumstance. First, The A.M.R navigates on unknown space with wall-following and gathers the sensor data from the environments. After this, we constructs the occupancy grid map by interpreting the gathered sensor data to occupancy probability. For the path planning of roadmap method, the weighted graph map is extracted from the occupancy grid map using morphological image processing and thinning algorithm. This methods is implemented on an A.M.R having a ultrasonic sensor.

  • PDF

Non-contact sensor to detect movement of dementia patient

  • Rei Satoh;Seigo Ariki;Takakazu Ishimatsu;Nobuoh Matsuzaka;Ung, Kang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.89.5-89
    • /
    • 2001
  • In this paper we explain about systems developed to forecast the standing up of the dementia patients. Basic idea of our approach is to measure the respiration and body movements in the bed. Based on the data measured, forecasting of standing up action from the bed is possible to some extent. First system proposed uses an image processing technique. Data obtained about the respiration and movements are used to forecast the standing up of the patients. The second system uses ultrasonic sensors, which emits and receives ultrasonic signals. Two techniques f the ultrasonic sensors are considered. One technique is to emit ultrasonic burst signals and to detect the instance when ...

  • PDF

Estimation of Attenuation Coefficient based on Ultrasonic Image for quantification of the Liver Diseases (간 병변의 정량화를 위한 초음파 영상 신호의 감쇄상수 추정)

  • 우광방;신동호;이성모;신영민;이노성;오성권
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 1988
  • To provide a quantitative parameter of evaluating diagnosis of the liver diseases accurately, the ultrasonic attenuation coefficient was estimated from liver phantoms, 15 normal human livers and 30 liver disease patients. Two kind of phantoms(No.1: 1552m/s, No.2: 1562m/s) which have velocity (1560m/s) similar to that in human liver were constructed and their ultrasonic attenuation coefficients were determined. In this paper the spectral-shift approach and spectral-difference approach were used for estimating ultrasonic attenuation coefficient, \ulcornerdB/Cm.MHz). These two approaches were utilized to esitmate for 15 normal humans without any liver disease and 30 liver disease patients. The results indicate that the two types of phantoms produce the value of near the suggested value of 0.5 and the attenuation coefficients of hepatoma, normal liver, corrhosis, fatty liver and hepatitis show decreasing value in order named, suggesting that the present study can be of clinical value incorrelating the estimated attenuation coefficidents with the liver diseases.

  • PDF

A Study on an Automated Ultrasonic Testing System for the Inspection of Pipe Welding (배관 용접부 자동 초음파 검사 시스템 연구)

  • Kim, Han-Jong;Park, Jong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.520-523
    • /
    • 2008
  • As a result of the recent development of the electro-information industry, the hardware of an automated ultrasonic testing system is getting lighter and diversified image processing techniques are applied to its software so that the possible precise totaling and detecting of the flaws are studied. This study proposes an automated ultrasonic testing system of the pipe in order to organize the optimized system, and also describes the data flow and general composition of the software for the design of the system.

  • PDF