• Title/Summary/Keyword: Ultrasonic Wave Generator

Search Result 40, Processing Time 0.03 seconds

A Study on Transport Mechanism of the Ultrasonic Transporting System using Laser Scanning Vibrometer (Laser Scanning Vibrometer를 이용한 초음파 이송시스템의 이송 메커니즘에 관한 연구)

  • 정상화;신병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.841-844
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the vibration behavior of flexural beam in the ultrasonic transport system is verified using Laser Scanning Vibrometer. The experiments for verifying vibration are performed in three conditions such as in the maximum transport speed, in the zero speed, and in the change of transport direction.

  • PDF

A study on the dynamic characteristics of exciting Flexural beam by ultrasonic wave (초음파에 의해서 가진되어지는 Flexural Beam의 동특성에 관한 연구)

  • Jeong, Sang-Hwa;Shin, Sang-Moon;Kim, Gwang-Ho;Lee, Sang-Hee;Kim, Ju-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.792-796
    • /
    • 2006
  • In recent years, the semiconductor industry and the optical industry is developed rapidly. The recent demand has expanded for optical components such as a optical lens, a optical semiconductor and a measuring instrument. Object transport systems are driven typically by the magnetic field and the conveyer belt. Recent industry requires more faster and efficient transport system. However, conventional transport systems are not adequate for transportation of optical elements and semiconductors. Because conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. This transport system is using 2-mode ultrasonic wave excitation and flexural beam modes shapes are evaluated. It compared simulation results with experimental results

  • PDF

An Analysis of Vibration Characteristics in Ultrasonic Object Levitation Transport System (초음파를 이용한 물체 부상 이송시스템의 진동 특성 해석)

  • Jeong S.H.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.415-418
    • /
    • 2005
  • In the semiconductor and optical industry, a new transport system which can replace the conventional transport systems is required. The transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required fur reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system fur levitating object are proposed. The 3D vibration profiles of the beam are measured by Laser scanning Vibrometer fur verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured for evaluating the performance.

  • PDF

Flexural Beam Design of Ultrasonic Object Levitation Slide System (초음파 물체부상 이송시스템의 Flexural Beam 설계)

  • Jeong, Sang-Hwa;Kim, Hyun-Uk;Choi, Suk-Bong;Kim, Kwang-Ho;Park, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.959-962
    • /
    • 2005
  • In the semiconductor and optical industry. a new transport system which can replace the conventional transport system is required. The Transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required for reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system for levitation object are proposed. The 3D vibration profiles of the beam are measured by Laser Scanning Vibrometer for verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured fore evaluating the performance.

  • PDF

Long Range Cylindrically Guided Ultrasonic Wave Technique for Inspection

  • Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.364-371
    • /
    • 2003
  • In this paper, a review of the current status, on the use of long range cylindrically guided wave modes, and their interaction with cracks and corrosion damage in pipe-like structures will be discussed. Applications of cylindrically guided ultrasonic wave modes have been developed for inspection of corrosion damage in pipelines at chemical plants, flow-accelerated corrosion damage (wall thinning) in feedwater piping, and circumferential stress corrosion cracks in PWR steam generator tubes. It has been demonstrated that this inspection technique can be employed on a variety of piping geometries (diameters from 1 in. to 3 ft, and wall thickness from 0.1 to 6 in.) and a propagation distance of 100 meters or more is sometimes feasible. This technique can also be used in the inspection of inaccessible or buried regions of pipes and tubes.

Experimental Study of the Ultrasonic Vibration Effects on CHF Occurring on Inclined Flat Surfaces (초음파 진동이 경사진 평판에서의 CHF에 미치는 영향에 대한 실험연구)

  • 정지환;김대훈;권영철
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • Augmentation of CHF by ultrasonic vibration in water pool is experimentally investigated under pool boiling condition. The experiments are carried out using copper coated plates and distilled water. Measurements of CHF on flat plate heated surface were made with and without ultrasonic wave and with variations in inclined angle of the surface and water subcooling. Experimental apparatus consists of a bath, power supply, test section, ultrasonic generator, and data acquisition system. The measurements show that ultrasonic wave enhances CHF and its extent is dependent upon inclination angle as well as water subcooling. The rate of increase in CHF increases with an increase in water subcooling while it decreases with an increase in inclination angle. Visual observation shows that the cause of CHF augmentation is closely related with the dynamic behavior of bubble generation and departure in acoustic field.

Vibration Characteristics Analysis of Ultrasonic Levitation System according to the Disk-Type Stator (디스크형 스테이터 형상에 따른 초음파 부상장치의 진동특성 해석)

  • Jeong S.H.;Choi S.B.;Cha K.R.;Kim H.U.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1527-1530
    • /
    • 2005
  • In the semiconductor and optical industry the non-contact transportation is required for reducing the damages. The ultrasonic levitation is the solution of the problem. In this paper, the ultrasonic levitation system and 3 disk-type stator for levitation various object are proposed. The vibration modes of disks are analyzed with FEM and designed with the analysis results. The 3D vibration profiles of the disks are measured by Laser scanning vibrometer for verifying the vibration characteristics of the system. The amplitudes of the disks and the levitation heights of object are measured for evaluating the performance.

  • PDF

Experimental Studies on Ultrasonic Guided Waves for the On-Line Inspection of Structural Integrity of Nuclear Power Plants (원전 기기 건전성의 온라인 검사를 위한 유도 초음파의 실험적 연구)

  • Eom, Heung-Seop;Kim, Jae-Hee;Song, Sung-Jin;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.331-340
    • /
    • 2004
  • Deployment of an advanced on-line monitoring of the component integrity offers a prospect of improved performance, enhanced safety, and reduced overall cost for nuclear power plants. Ultrasonic guided waves have been known as one of the promising techniques that could be utilized for on-line monitoring. The present work is aimed at developing a new method for on-line monitoring of the pipes during the operation period of nuclear power plants. For this purpose, the steam generator (S/G) tube was selected as an object of tile experiment. Dispersion corves and the incident angles corresponding to the specific modes were calculated for the S/G tube. The modes of guided waves were identified by the time-frequency diagrams obtained by the short time Fourier transform. It was experimentally confirmed that there was no mode conversion when the ultrasonic guided waves passed over the curved region of the S/G tube. An optimum mode of guided wave for the S/G tube was suggested and verified by the experiment.

Vibration Characteristics of Ultrasonic Object Levitation Transport System according to the Flexural Beam Shape (Flexural Beam 형상에 따른 초음파 물체 부상 이송 시스템의 진동 특성)

  • Jeong S.H.;Shin S.M.;Kim G.H.;Lee S.H.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.331-332
    • /
    • 2006
  • Transport systems which are the important part of the factory automation have much influence on improving productivity. Object transport systems are driven typically by the magnetic field and conveyer belt. In recent years, as the transmission and processing of information is required more quickly, demands of optical elements and semiconductors increase. However, conventional transport systems are not adequate for transportation of those. The reason is that conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. Vibration modes of each flexural beam are verified by using Laser Scanning Vibrometer.

  • PDF