• 제목/요약/키워드: Ultrasonic Patterning

검색결과 5건 처리시간 0.022초

초음파 성형시 진동전달 방향에 따른 미세패턴의 전사특성 고찰 (Replication Characteristics of Micro-Patterns according to the Vibration Transmission Direction in the Ultrasonic Imprinting Process)

  • 서영수;이기연;조영학;박근
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1256-1263
    • /
    • 2012
  • The present study covers the ultrasonic patterning process to replicate micro-patterns on a polymer substrate. The ultrasonic patterning process uses ultrasonic waves to generate frictional heat between an ultrasonic horn and the polymer substrate, from which the surface region of the polymer substrate is softened sufficiently for the replication of micro-patterns. The ultrasonic patterning process can divided into two categories according to the direction of vibration transmission: direct patterning and indirect patterning. The direct patterning uses a patterned horn, and the ultrasonic vibration is transferred directly from the patterned horn to the substrate. On the contrary, the indirect patterning process uses a plain horn, and the micro-patterns are engraved on a mold that is located below the substrate. Thus, the micro-patterns are replicated as an indirect manner. In this study, these direct and indirect patterning processes are compared in terms of the replication characteristics. Additionally, the possibility of double-side patterning is also discussed in comparison with the conventional single-side patterning process.

초음파 패턴성형시 유동방향 구속에 따른 미세패턴의 성형특성 고찰 (Effect of Material Flow Direction on the Replication Characteristics of the Ultrasonic Patterning Process)

  • 서영수;이기연;박근
    • 소성∙가공
    • /
    • 제21권2호
    • /
    • pp.119-125
    • /
    • 2012
  • The present study addresses a direct patterning process on a plastic film using ultrasonic vibration energy. In this process, a tool horn containing micro-patterns is attached to an ultrasonic power supply, and is used with ultrasonic vibration to replicate micro-patterns on the surface of a plastic film. To improve the replication characteristics of the micro-patterns, the effect of the die shape of the ultrasonic patterning process was investigated with respect to the flow direction control. Finite element analyses were performed to predict the flow characteristics of the polymer with variations in die design parameters. Experiments were conducted using the optimally-designed die, from which it was possible to attain much improved pattern replication.

SPL과 소프트 리소그래피를 이용한 나노 구조물 형성 연구 (Fabrication of Nanoscale Structures using SPL and Soft Lithography)

  • 류진화;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.138-145
    • /
    • 2006
  • A nanopatterning technique was proposed and demonstrated for low cost and mass productive process using the scanning probe lithography (SPL) and soft lithography. The nanometer scale structure is fabricated by the localized generation of oxide patterning on the H-passivated (100) silicon wafer, and soft lithography was performed to replicate of nanometer scale structures. Both height and width of the silicon oxidation is linear with the applied voltagein SPL, but the growth of width is more sensitive than that of height. The structure below 100 nm was fabricated using HF treatment. To overcome the structure height limitation, aqueous KOH orientation-dependent etching was performed on the H-passivated (100) silicon wafer. Soft lithography is also performed for the master replication process. Elastomeric stamp is fabricated by the replica molding technique with ultrasonic vibration. We showed that the elastomeric stamp with the depth of 60 nm and the width of 428 nm was acquired using the original master by SPL process.

유체 디스펜싱 시스템의 프린팅 프로세스 최적화를 위한 주요 파라미터 분석 (Analysis of Key Parameters for the Printing Process Optimization of a Fluid Dispensing Systems )

  • 강호승;정해창;홍순호;윤남경;손선영
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.382-393
    • /
    • 2024
  • 유체 디스펜싱(fluid dispensing) 방식인 Microplotter 시스템은 압전 소자를 통한 초음파 펌핑(pumpin)을 기반으로 유체를 분사한다. 이 기법은 넓은 범위의 점도를 가진 다양한 물질들이 마이크로 사이즈로 프린팅 되는 것을 가능하게 한다. 본 논문에서는 디스펜서 프린팅 기술에 대해 소개하고 장비를 이용한 다양한 공정을 이해 및 응용에 목적을 두고 있다. 또한, 분사 강도, 분사 시 팁의 높이, 분사 속도와 같은 매개변수들을 조절하여 장비의 최적화 방법에 대해 설명하고자 한다. 금속 나노 입자, 탄소나노튜브, DNA, 단백질 등 광범위한 유체와 호환된다는 Microplotter의 장점을 이용함으로써 인쇄전자, 생명공학, 화학공학 등 다양한 분야에서 활용될 것으로 기대된다.