• Title/Summary/Keyword: Ultralight Structure

Search Result 3, Processing Time 0.016 seconds

Acoustic Abosrption Characteristic and Fabrication process of Foamed Aluminum (발포알루미늄의 제조공정 및 흡음특성)

  • Hur, Bo-Young;Ahn, Hyo-Jun;Jeon, Sung-Hwan;Choi, Dae-Choul;Kim, Sang-Youl;Hur, Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.396-402
    • /
    • 2000
  • Porous structures of aluminum foam have been studied. The apparent foam shape, foam hight, density, pore size, shape, and their distributions in various section areas of the experimental samples have been investigated. The sample have been cast into metallic mold, using aluminum foam prepared from a precursor based on pure Al ingot mixed with various amount of 1-2wt% increasing viscosity and foam agent materials. The process provides for flexibility in design of foam structures via relatively easy control over the amount of hydrogen evolution and the drainage processes which occur during foam formation. This is facilitated by manupulating parameters such as the foaming agent, thermal histories during solidification and mix melt viscosities. The acoustical performance of the panel made with the foamed aluminum is considerably improved; its absorption coefficient shows NRC 0.6-0.8. It has been found that the Al foam is very preferable for the compactness of the thermal system.

  • PDF

A New Way to Manufacture Ultra Light Metal Structures (초경량 금속구조재의 제작을 위한 새로운 방안)

  • Kang, Ki-Ju;Jeon, Gye-Po;Nah, Seong-Jun;Ju, Bo-Seong;Hong, Nam-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.296-303
    • /
    • 2004
  • Recently, the ultra light metal structure with periodic and three dimensional truss elements takes attention because of its multi-functionality and substantial heat resistance. However, the complicated fabrication process leading to high cost has been a major obstacle to wide applications. In this paper, a new idea to construct an ultra light structure with periodic, three dimensional truss using metal wires is presented. To prove the practical validity, a Kagome-like structure was fabricated from stamped wires and punched face sheets. It was assembled by soldering. Through three-point bending and compression tests, the strength was evaluated and compared with the theory.

Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization (도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구)

  • Cho, Jeong Gil;Koo, Jeong Seo;Jung, Hyun Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1099-1107
    • /
    • 2013
  • This study proposes a weight reduction design for urban transit, specifically, a Korean EMU carbody made of aluminum extrusion profiles, according to size optimization and useful material changes. First, the thickness of the under-frame, side-panels, and end-panels were optimized by the size optimization process, and then, the weight of the Korean EMU carbody could be reduced to approximately 14.8%. Second, the under-frame of the optimized carbody was substituted with a frame-type structure made of SMA 570, and then, the weight of the hybrid-type carbody was 3.8% lighter than that of the initial K-EMU. Finally, the under-frame and the roof-panel were substituted with a composite material sandwich to obtain an ultralight hybrid-type carbody. The weight of the ultralight hybrid-type carbody was 30% lighter than that of the initial K-EMU. All the resulting carbody models satisfied the design regulations of the domestic Performance Test Standard for Electrical Multiple Unit.