• Title/Summary/Keyword: Ultrafine Grained Materials

Search Result 38, Processing Time 0.02 seconds

Microstructure and Consolidation of Gas Atomized Al-Si Powder

  • Hong, S.J.;Lee, M.K.;Rhee, C.K.;Chun, B.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.994-995
    • /
    • 2006
  • The microstructure of the extruded Al-20Si bars showed a homogeneous distribution of eutectic Si and primary Si particles embedded in the Al matrix. The grain size of ${\alpha}-Al$ varied from 150 to 600 nm and the size of the eutectic Si and primary Si in the extruded bars was about 100 - 200 nm. The room temperature tensile strength of the alloy with a powder size $<26{\mu}m$ was 322 MPa, while for the coarser powder ($45-106{\mu}m$) it was 230 MPa. With decreasing powder size from $45-106{\mu}m$ to $<26{\mu}m$, the specific wear of all the alloys decreased significantly at all sliding speeds due to the higher strength achieved by ultrafine-grained constituent phases. The fracture mechanism of failure in tension testing and wear testing was also studied.

  • PDF

Mechanically Workable High-strength Cu-Zr Composite (소성가공이 가능한 고강도 Cu-Zr 복합재료)

  • Shin, Sang-Soo;Lim, Kyung-Mook;Kim, Eok-Soo;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.293-299
    • /
    • 2012
  • Ultrafine-grained or nanostructured alloys usually lack the strain hardening capability needed to sustain uniform tensile deformation under high stresses. To circumvent this problem, we fabricated the Cu-based composite reinforced with the 3-dimensionally interconnected $Cu_5Zr$ phase using the combined technique of rapid quenching and subsequent hot-rolling. The alloy exhibited a tensile ductility of ~2.5% together with a strength of 1.57 GPa, which exceeds the values of most commercially available Cu-Be alloys. In this study, we elucidated the structural origin of the high strength and tensile ductility of the developed alloy by examining the thermal stability of the $Cu_5Zr$ reinforcing phase and the energy (work) absorption capability of the Cu matrix.

Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys (이종 알루미늄의 ARB공정에 의한 초미세립 복합알루미늄합금판재의 제조 및 평가)

  • Lee, Seong-Hee;Kang, Chang-Seog
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.893-899
    • /
    • 2011
  • Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.

Effect of stress-strain curve changing with equal channel angular pressing on ultimate strength of ship hull stiffened panels

  • Sekban, Dursun Murat;Olmez, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.473-484
    • /
    • 2021
  • Similar to other structures, ultimate strength values showing the maximum load that the structure can resist without damaging has great importance on ships. Therefore, increasing the ultimate strength values will be an important benefit for the structure. Low carbon steels used in ships due to their low cost and good weldability. Improving the ultimate strength values without interfering with the chemical composition to prevent of the weldability properties of these steels would be very beneficial for ships. Grain refinement via severe plastic deformation (SPD) is an essential strengthening mechanism without changing the chemical composition of metallic materials. Among SPD methods, equal channel angular pressing (ECAP) is one of the most commonly used one due to its capacity for achieving bulk ultrafine-grained (UFG) materials. When the literature is examined, it is seen that there is no study about ultimate strength calculation in ships after ECAP. Therefore, the mean purpose of this study is to apply ECAP to a shipbuilding low carbon steel to be able to achieve mechanical properties and investigate the alteration of ship hull girder grillage system's ultimate strength via finite element analysis approach. A fine-grained (FG) microstructure with a mean grain size of 6 ㎛ (initial grain size was 25 ㎛) was after ECAP. This microstructural evolution brought about a considerable increase in strength values. Both yield and tensile strength values increased from 280 MPa and 425 MPa to about 420 MPa and 785 MPa, respectively. This improvement in the strength values reflected a finite element method to determine the ultimate strength of ship hull girder grillage system. As a result of calculations, it was reached significantly higher ultimate strength values (237,876 MPa) compared the non-processed situation (192,986 MPa) on ship hull girder grillage system.

Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion (고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동)

  • Yoon, Eun-Yoo;Chae, Hong-Jun;Kim, Taek-Soo;Lee, Chong-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.190-196
    • /
    • 2010
  • In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.

Microstructural Evolution of Cu-15 wt%Ag Composites Processed by Equal Channel Angular Pressing (등통로각압축공정을 이용하여 제조된 Cu-15 wt%Ag 복합재의 미세구조)

  • Lee, In Ho;Hong, Sun Ig;Lee, Kap Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.931-937
    • /
    • 2012
  • The microstructure of Cu-15 wt%Ag composites fabricated by equal channel angular pressing (ECAP) with intermediate heat treatment at $320^{\circ}C$ was investigated by transmission electron microscopy (TEM) observations. Ag precipitates with a thickness of 20-40 nm were observed in the eutectic region of the Cu-15 wt%Ag composite solution treated at $700^{\circ}C$ before ECAP. The Cu matrix and Ag precipitates had a cube on cube orientation relationship. ECAPed composites exhibited ultrafine-grained microstructures with the shape and distribution dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the Cu and Ag grains were elongated along the shear direction and many micro-twins were observed in elongated Cu grains as well as in Ag filaments. The steps were observed on coherent twin boundaries in Cu grains. For route Bc in which the sample was rotated by 90 degrees after each pass, a subgrain structure with misorientation of 2-4 degree by fragmentation of the large Cu grains were observed. For route C in which the sample was rotated by 180 degrees after each pass, the microstructure was similar to that of the route A sample. However, the thickness of the elongated grains along the shear direction was wider than that of the route A sample and the twin density was lower than the route A sample. It was found that more microtwins were formed in ECAPed Cu-15 wt%Ag than in the drawn sample. Grain boundaries were observed in relatively thick and long Ag filaments in Cu-15 wt%Ag ECAPed by route C, indicating the multi-crystalline nature of Ag filaments.

Development of ultrafine grained silicon carbide by spark plasma sintering (스파크 플라즈마 소결에 의한 초미세 결정립 탄화규소의 개발)

  • 조경식;이광순;백성호;이상진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.176-181
    • /
    • 2003
  • Rapid densification of a SiC powder with additive 0.5 wt% $B_4$C was conducted by spark plasma sintering (SPS). The unique features of the process are the possibilities of using very fast heating rate and short holding time to obtain fully dense materials. The heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature and soaking time varied to 1800, 1850, 1900 and $1950^{\circ}C$ and 10, 20 and 30 min, respectively. All of the SPS-sintered specimens at $1950^{\circ}C$ reached near-theoretical density. The XRD found that 3C-to-6H transformation at $1850^{\circ}C$. The microstructures of the rapidly densified SiC ceramics consisted of duplex microstructure with ultrafine equiaxed grains under 2 $\mu\textrm{m}$ and elongated grains of 0.5∼2 $\mu\textrm{m}$ wide, length 3∼10 $\mu\textrm{m}$. The biaxial strength increased with the increase of sintering time. Strength of 392.7 MPa was obtained with the fully densified specimen sintered at $1950^{\circ}C$ for 30 min, in agreement with the general tendency that strength increases with decreases pore. On the other hand, the fracture toughness shows the value of 2.17∼2.34 MPa$.$$m^{1/2}$ which might be due to the transgranular fracture mode.

In vitro evaluation of a removable partial denture framework using multi-directionally forged titanium

  • Suzuki, Ginga;Shimizu, Satoshi;Torii, Mana;Tokue, Ai;Ying, Guo;Yoshinari, Masao;Hoshi, Noriyuki;Kimoto, Katsuhiko;Miura, Hiromi;Hayakawa, Tohru;Ohkubo, Chikahiro
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.369-375
    • /
    • 2020
  • PURPOSE. This study evaluated the availability of multi-directionally forged (MDF) titanium (Ti) as a component of removable partial dentures (RPDs). MDF-Ti remarkably improved the mechanical properties of RPDs due to its ultrafine-grained structure. MATERIALS AND METHODS. The wear resistance, plaque adhesion, and machinability of MDF-Ti were tested. As controls, commercially pure (CP) titanium was used for wear, plaque adhesion, and machinability tests. For wear resistance, the volume losses of the titanium teeth before and after wear tests were evaluated. Plaque adhesion was evaluated by the assay of Streptococcus mutans. In the machinability test, samples were cut and ground by a steel fissure bur and carborundum (SiC) point. An unpaired t-test was employed for the analysis of the significant differences between MDF-Ti and the control in the results for each test. RESULTS. Wear resistance and plaque adherence of MDF-Ti similar to those of CP-Ti (P>.05) were indicated. MDF-Ti exhibited significantly larger volume loss than CP-Ti in all conditions except 100/30,000 g/rpm in machinability tests (P<.05). CONCLUSION. Although the wear resistance and plaque adherence of MDF-Ti were comparable to those of controls, MDF-Ti showed better machinability than did CP-Ti. MDF-Ti could be used as a framework material for RPDs.