• Title/Summary/Keyword: Ultra-thin copper

Search Result 32, Processing Time 0.031 seconds

Investigation of Deep Drawability and Product Qualities of Ultra Thin Beryllium Copper Sheet Metal (베릴륨동 극박판의 드로잉 성형성과 품질특성 연구)

  • Park, S.S.;Hwang, K.B.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • The present study is focused on the deep drawability and product qualities of ultra thin beryllium copper sheet metal. The goal of this research is to investigate the limit drawing ratio in deep drawing of ultra thin beryllium copper metal. For the experiment, beryllium copper(C1720, $50{\mu}m$ in thickness) is used. Tensile test are also carried out to find out the material properties. Deep drawing experiments are carried out in Universal Testing Machine(UTM) to obtain limit drawing ratio. Deep drawing tests are carried out for various specimen sizes. Teflon film is used as a lubricant and constant blank holding force is imposed. Sheet thickness and surface hardness are measured along radial direction after deep drawing. Thickness is measured using optical microscope. For beryllium copper(C1720), the maximum LDR of 2.4 is obtained when the die shoulder radius is 20 or 30 times of sheet thickness.

Characteristics of the aluminum thisn films for the prevention of copper oxidation (구리 금속선의 산화 방지를 위한 알루미늄 박막의 산화 방지 특성)

  • 이경일;민경익;주승기;라관구;김우식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.108-113
    • /
    • 1994
  • The characteristics of the oxidation prevention layers for the copper metallization were investigated. The thin films such as Cr, TiN and Al were used as the oxidation prevention layers for copper. Ultra thin aluminum films were found to prevent the oxidation of copper up to the highest oxidation annealing temperature among the barrier layers examined in this study. It was found that oxygen did not diffuse into copper through aluminum films because of the aluminum oxide layer formed on the aluminum surface and the ultra thin aluminum film could be a good oxidation barrier layer for the copper metallization.

  • PDF

Flexible Durability of Ultra-Thin FPCB (초박형 FPCB의 유연 내구성 연구)

  • Jung, Hoon-Sun;Eun, Kyoungtae;Lee, Eun-Kyung;Jung, Ki-Young;Choi, Sung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.69-76
    • /
    • 2014
  • In this study, we developed an ultra-thin flexible printed circuit board(FPCB) using the sputtered flexible copper clad laminate. In order to enhance the adhesion between copper and polyimide substrate, a NiMoNb addition layer was applied. The mechanical durability and flexibility of the ultra-thin FPCB were characterized by stretching, twisting, bending fatigue test, and peel test. The stretching test reveals that the ultra-thin FPCB can be stretched up to 7% without failure. The twisting test shows that the ultra-thin FPCB can withstand an angle of up to $120^{\circ}$. In addition, the bending fatigue test shows that the FPCB can withstand 10,000 bending cycles. Numerical analysis of the stress and strain during stretching indicates the strain and the maximum von Mises stress of the ultra-thin FPCB are comparable to those of the conventional FPCB. Even though the ultra-thin FPCB shows slightly lower durability than the conventional FPCB, the ultra-thin FPCB has enough durability and robustness to apply in industry.

A Study on the Enhancement of Electrical Conductivity of Copper Thin Films Prepared by CVD Technology (화학적기상증착법에 의한 구리박막의 전기전도도 개선에 관한 연구)

  • 조남인;김용석;김창교
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.459-466
    • /
    • 2000
  • For the applications in the ultra-large-scale-integration (ULSI) metallization processing copper thin films have been prepared by metal organic chemical vapor deposition (MOCVD) technology on TiN/Si substrates. The films have been deposited with varying the experimental conditions of substrate temperatures and copper source vapor pressures. The films were then annealed in a vacuum condition after the deposition and the annealing effect to the electrical conductivity of the films was measured. The grain size and the crystallinity of the films were observed to be increased by the post annealing and the electrical conductivity was also increased. The best electrical property of the copper film was obtained by in-situ annealing treatment at above 40$0^{\circ}C$ for the sample prepared at 18$0^{\circ}C$ of the substrate temperature.

  • PDF

A study on the preparation and characterization of Octa-dodecyloxy Copper-Phthalocyanine LB films (Octa-dodecyloxy Copper-Phthalocyanine LB막 제작에 관한 연구)

  • 구자룡;이한성;김영관;손병청;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.150-153
    • /
    • 1997
  • Langmuir-Blodgett(LB) technique is one of the ways of fabricating organic ultra-thin films. It is well known that It has the advantage to control the alignment and orientation of the molecules in the films. Metallo-phthalocyanines(MPcs) are sensitive to electron affinitive toxic gaseous molecules, such as NO$_2$, NO, SO$_2$. MPcs are thermal, optical, mechanical, chemical stable. Therefore, it is interesting to prepare phthalocyanine LB films containing copper as a chemical sensor for NO$_2$ and SO$_2$ gas and test their sensitivity to these toxic gases. In this study, thin films of Octa-dodecylosy copper-phthalocyanine were prepared by LB technique. $\pi$-A isotherm, transfer ratio, UV-VIS. spectroscopy of these films were investigated. Also current-voltage(I-V) characteristics of these was auto investigated.

  • PDF

Fabrication of Ultra Small Size Hole Array on Thin Metal Foil (초미세 금속 박판 홀 어레이 가공)

  • Rhim S. H.;Son Y. K.;Oh S. I.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.9-14
    • /
    • 2006
  • In the present research, the simultaneous punching of ultra small size hole of $2\~10\;{\mu}m$ in diameter on flat rolled thin metal foils was conducted with elastic polymer punch. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of 1.5fm in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The process set-up is similar to that of the flexible rubber pad farming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions. The effects of the wafer die hole dimension and heat treatment of the workpiece on ultra small size hole formation of the thin foil were discussed. The process condition such as proper die shape, pressure, pressure rate and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole away in a one step operation.

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • Han, Dong-Seok;Mun, Dae-Yong;Gwon, Tae-Seok;Kim, Ung-Seon;Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

Micro channel forming of ultra thin copper foil (초미세 구리 박판의 마이크로 채널 성형)

  • Joo B. Y.;Rhim S. H.;Oh S. I.;Baek S. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.49-53
    • /
    • 2005
  • The objective of this research was to establish the size limitation of micro metal forming and analyze the formability of foil. Flat-rolled ultra thin metallic copper foil($3{\mu}m$ in thickness) was used as a forming material and foil was annealed to improve the formability at the temperature of $385^{\circ}C$. Forming die was fabricated by using etching technique of DRIE(deep reactive ion etching) and HNA isotropic etching. For the forming die and coupe. foil were vacuum packed and the forming was conducted as applying hydrostatic pressure of 250MPa to the vacuum packed unit. We successfully obtained the micro channels of $12\~14{\mu}m$ width and $9{\mu}m$ depth from micro forming process we designed. We also investigated the thickness strain distribution of foil from experiment and FE simulation result. Micro channels had a good formability of smooth surface and size accuracy. We expect that micro metal forming technology will be applied to production of micro parts.

  • PDF

MATERIAL AND ELECTICAL CHARACTERISTICS OF COPPER FILMS DEPOSITED BY MATAL-ORGANIC CHEMICAL TECHNIQUE

  • Cho, Nam-Ihn;Park, Dong-Il;Nam, H. Gin
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.803-808
    • /
    • 1996
  • Material and electrical characteristies of copper thin films prepared by metal organic chemical vapor deposition (MOCVD) have been investigated for interconnection applications in ultra large scale integration circuits (ULSI). The copper films have been deposited a TiN substrates using a metal organic precursor, hexafluoro acetylacetonate trimethyvinylsilane copper, VTMS(hfac)Cu (I). Deposition rate, grain size, surface morphology, and electrical resistvity of the copper films have been measuredfrom samples prepared at various experimental conditions, which include substrate temperature, chamber pressure, and carrier gas flow rate. Results of the experiment showed that the electrical property of the copper films is closely related to the crystallinity of the films. Lowest electrical resistivity, $2.4{\mu}{\Omega}.cm$ was obtained at the substrate temperature of $180^{\circ}C$, but the resistivity slightly increased with increasing substrate temperature due to the carbon content along the copper grain boundaries.

  • PDF

A study on the $NO_2$ Gas Detection Characteristics of Octa-dodecyloxy Copper-phthalocyanine LB Films (Octa-dodecyloxy Copper-phthalocyanine LB막의 $NO_2$ 가스 탐지 특성에 관한 연구)

  • Koo, Ja-Ryong;Lee, Han-Sung;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1247-1249
    • /
    • 1997
  • Langmuir-Blodgett(LB) method is one of the ways of fabricating organic ultra thin films. It is well known that It has the advantage to control the alignment and orientation of the molecules in the films. Metallo-phthalocyanines (MPcs) are sensitive to electron affinitive toxic gaseous molecules, such as $NO_2$, NO, $SO_2$. In this study, thin films of octa-dodecyloxy copper-phthalocyanine were prepared by LB method and characterized by using UV/Vis absorption spectroscopy and ellipsometry. Optimal transfer condition of LB films was investigated and preliminary results of current-voltage (I-V) characteristics of these films exposed to $NO_2$ gas as a function of film thickness.

  • PDF