• Title/Summary/Keyword: Ultra-high strength steel

Search Result 293, Processing Time 0.024 seconds

Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel (열간 단조에 의한 고탄소강의 미세조직 변화가 기계적 성질에 미치는 영향)

  • Kang, C.Y.;Kwon, M.K.;Kim, C.H.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.212-217
    • /
    • 2012
  • This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

A Convergence Study on the Reaction Injection Mold Using Ultra High Strength Concrete (초고강도 콘크리트를 이용한 반응 사출 금형에 관한 융합 연구)

  • Jaung, Jae-Dong;Kim, Hong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.211-217
    • /
    • 2020
  • There is an increasing demands of more efficient and economical ways of mold making according to the spreading trend of small quantity batch production system. Therefore, this study aims to examine the applicability of ultra high strength concrete, which has a compressive strength over 80MPa, as a mold material. The ultra high strength concrete has several advantages such as lower cost, lighter weight and convenience of shape making compared to the traditional mold materials. Although the strength of the ultra high strength concrete is lower than that of the tool steel, it was considered to be useful for small batch processes with relatively low pressure. Therefore, in this study, a prototype mold for reaction injection molding of polyurethane was developed using ultra high strength concrete and it was examined that the possibility and characteristics of concrete as a mold material.

Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers (섬유 조합에 따른 초고성능 콘크리트의 인장거동)

  • Choi, Jung-Il;Koh, Kyung-Taek;Lee, Bang-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Ultra-High Strength Concrete(UHPC) has ultra-high material performance including high strength and high flowability. On the other hand it is less ductile than high ductile fiber reinforced cementitious composite. This study investigated the effect of combination of steel fiber and micro fiber on the tensile behavior of UHPC. Four types of UHPC containing combination of steel fiber, polyethylene(PE), polyvinyl alcohol(PVA), and basalt fiber were designed. And then uniaxial tension tests were performed to evaluate the tensile behavior of UHPC according to combination of fibers. And density was measured to evaluate whether micro fiber induces unintentional high pore or not. From the test results, it was exhibited that PE fiber with high strength is effective to improve the tensile behavior of UHPC and basalt fiber is effective to increase the cracking and tensile strength of UHPC. Furthermore, it was also verified that micro fiber does not make high pore.

A Study on the flexural Behavior of Ultra-Strength Steel Fiber Reinforced Concrete (초고강도 강섬유 보강 콘크리트의 휨특성에 관한 연구)

  • Ryu, Gum-Sung;Park, Jung-Jun;Kang, Su-Tea;Koh, Kyung-Taeg;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.333-336
    • /
    • 2005
  • This paper presents a comparative evaluation of eight different types of steel fibers used as reinforcing material in concrete beams. The fibers which used ultra-strength steel fiber reinforced concrete were fiber length of 30 to 60mm, aspect ratio of 43 to 86, W/B ratio 0.16 to 0.30, fiber types of both ends hooked and straight shape and fiber volume fraction of 1 to 5$\%$. As for the test results, it estimated the influence of fiber volume, length and aspect ratio on the mechanical properties of high toughness concrete, the mechanical properties improved according to increase fiber volume, to increase aspect ratio and to long fiber length. And the resonable fiber volume in high toughness concrete was analyzed 2$\%$ based on the results of mechanical properties.

  • PDF

Experimental Study of Behavior in I Shaped RC Beams without stirrups using Ultra High Performance Cementitious Composite (UHPCC를 사용한 전단보강이 없는 I형 보의 거동에 대한 실험적 연구)

  • Kang Su Tae;Park Jung Jun;Kim Sung Wook;Han Sang Muk;Jeon Sang Eun;Lee Jang Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.57-60
    • /
    • 2004
  • Recently, Many researchers are interested in ultra-high performance cementitious compostie characterized by high strength and high durability and trying to apply for structural members. In this paper, twelves fiber-reinforced UHPCC with high compressive strength over 150MPa I shaped beam without stirrups were tested under various conditicns to investigate the mechanical behavior of UHPCC I shaped beam without stirrups. Variables considered in this study includes steel fiber volume fraction, reinforcememt steel ratio, and shear spar ratio.

  • PDF

Resistance to Hydrogen Embrittlement of Ultra-high Strength Pearlitic Bolt (펄라이트 조직을 갖는 초고강도 볼트의 수소취성 저항성)

  • Ahjeong Lyu;Young-Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • Recently, ultra-high strength bolts have been developed for weight lightening of a vehicle and fuel efficiency. However, some amount of diffusible H is absorbed into the bolt during its manufacturing process so that H embrittlement (HE) often occurs particularly in high strength bolts with a tempered martensitic microstructure. This brings attention to ultra-high strength pearlitic bolts with a high resistance to HE. Therefore, in this study the HE resistance of the 1.6 GPa grade pearlitic bolt was evaluated through tightening tests and slow strain rate tests (SSRTs), and fracture surfaces of failed bolts were comparatively observed. A critical H content for the tightening test turned out to be ~0.23-0.35 mass ppm. The bolt with a diffusible H content of ~0.35 mass ppm was fractured during the tightening test, showing a quasi-cleavage fracture surface, indicating the occurrence of HE. In addition, the bolt underwent premature elastic failure during the SSRT. This implies that the HE resistance of high strength bolts can be evaluated by both tightening test and SSRT.

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.

Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet (초고강도급 자동차용 강재 내 ε-carbide (Fe2.4C)가 부식 및 수소확산거동에 미치는 영향)

  • Park, Jin-seong;Yun, Duck Bin;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.295-307
    • /
    • 2021
  • Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering treatments conducted at below A1 temperatures had a significant influence on corrosion kinetics. Compared to a steel sample with cementite (Fe3C), a steel sample with ε-carbide (Fe2.4C) showed higher corrosion resistance during a long-term exposure to a neutral aqueous solution. In addition, the diffusion kinetics of hydrogen atoms formed by electrochemical corrosion reactions in the steel matrix with ε-carbide were slower than the steel matrix with cementite because of a comparatively higher binding energy of hydrogen with ε-carbide. These results suggest that designing steels with fine ε-carbide distributed uniformly throughout the matrix can be an effective technical strategy to ensure high resistance to hydrogen embrittlement induced by aqueous corrosion.

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.