• 제목/요약/키워드: Ultra-high performance concrete (UHPC)

검색결과 194건 처리시간 0.03초

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

등가재령을 활용한 초고성능 콘크리트의 압축강도 예측식 제안 (A Proposal for Predicting the Compressive Strength of Ultra-high Performance Concrete Using Equivalent Age)

  • 백성진;박재웅;한준희;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.149-150
    • /
    • 2023
  • This study proposes the most suitable strength prediction model equation for UHPC by calculating the apparent activation energy of UHPC according to the curing temperature and deriving the integrated temperature and compressive strength prediction equation. The results are summarized as follows. The apparent activation energy was calculated using the Arrhenius function, which was calculated as 21.09 KJ/mol. A model equation suitable for UHPC was calculated, and when the Flowman model equation was used, it was confirmed that it was suitable for the properties of UHPC using a condensation promoting super plasticizing agent.

  • PDF

강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성 (Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete)

  • 김경철;양인환;조창빈
    • 콘크리트학회논문집
    • /
    • 제28권2호
    • /
    • pp.177-185
    • /
    • 2016
  • 이 논문에서는 강섬유 보강 초고성능 콘크리트(UHPC)의 부재의 휨거동을 특성을 파악하고자 하였다. 하이브리드 강섬유보강 초고성능 콘크리트의 압축강도는 150 MPa이다. 부피비 1.5%의 하이브리드 강섬유 보강 초고성능 콘크리트의 휨거동 특성 실험을 수행하였다. 강섬유보강 콘크리트의 압축 및 인장거동 재료 특성은 구조거동 예측을 위해 매우 중요하다. 강섬유 보강 초고성능 콘크리트의 하중-균열개구변위 측정결과를 이용하여 인장거동 특성을 파악하였다. 실험결과는 하이브리드 강섬유 보강 UHPC는 균열제어에 유리한 것을 나타낸다. 또한, 강섬유 보강 UHPC 보의 연성지수는 1.6~3.0을 나타내어 연성거동에 효과적임을 나타낸다. 모멘트-곡률 관계 측정결과와 해석결과를 비교하였다. 휨철근을 배근하지 않은 UHPC 보에 대한 휨강도 예측결과는 측정 휨강도를 다소 과다평가하고 있다. 전반적으로 본 연구에서 제시한 강섬유 보강 초고성능 콘크리트 재료 및 휨 거동 모델링 제안기법에 의해 압축강도 150 MPa 급의 강섬유 보강 콘크리트 보의 합리적인 휨성능 예측이 가능하다.

접합 조건 및 횡구속 조건에 따른 초고성능 프리캐스트 PSC 교량 접합부의 전단 거동에 관한 실험적 연구 (Experimental Study on the Shear Behavior of Ultra High Performance Precast PSC Bridge Joint with Joint Type and Lateral Force)

  • 이창홍;김영진;진원종;최은석
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.379-387
    • /
    • 2011
  • 초고성능콘크리트(UHPC)의 개발은 재료 역학적 특성면에서 기존의 일반 및 고성능 콘크리트에 비해 월등한 역학적 성능을 발휘하는 것으로 인식되고 있으나, 이에 관한 시공성 및 구조적 안전성에 대해서는 향후 많은 수정 및 보완 작업을 필요로 함이 예상되어진다. 이 연구에서는 UHPC를 적용한 프리캐스트 접합부의 전단 거동 특성의 분석을 위해 접합부 사이에 전단키를 설치한 경우의 접합 방식 및 횡구속 응력에 따른 전단 거동 특성 실험을 수행하였다. 실험 결과 에폭시 접합을 이용한 UHPC 접합의 경우가 현장 타설을 모사한 일체 타설의 경우보다 파괴 하중 및 전단 저항 응력면에서 우수함을 보였고, 횡구속 응력의 증가에 의해 전단 응력은 증가되지만, 횡구속 응력과 전단 응력 사이의 상호 효과에 따른 최적 임계 횡구속 응력이 존재하고 있음을 제시할 수 있었다.

Effect of high temperatures on local bond-slip behavior between rebars and UHPC

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.163-178
    • /
    • 2022
  • This paper aimed to study the local bond-slip behavior between ultra-high-performance concrete (UHPC) and a reinforcing bar after exposure to high temperatures. A series of pull-out tests were carried out on cubic specimens of size 150×150×150 mm with deformed steel bar embedded for a fixed length of three times the diameter of the tested deformed bar. The experimental results of the bond stress-slip relationship were compared with the Euro-International Concrete Committee (CEB-Comite Euro-International du Beton)-International Federation for Prestressing (FIP-Federation Internationale de la Precontrainte) Model Code and with prediction models found in the literature. In addition, based on the test results, an empirical model of the bond stress-slip relationship was proposed. The evaluation and comparison results showed that the modified CEB-FIP Model code 2010 proposed by Aslani and Samali for the local bond stress-slip relationship for UHPC after exposure to high temperatures was more conservative. In contrast, for both room temperature and after exposure to high temperatures, the modified CEB-FIP Model Code 2010 local bond stress-slip model for UHPC proposed in this study was able to predict the test results with reasonable accuracy.

Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modelling

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.481-492
    • /
    • 2017
  • The aim of this paper is to investigate the effect of quartz powder (Qp), quartz sand (Qs), and different water curing temperature on mechanical properties including 7, 14, 28-day compressive strength and 28-day splitting tensile strength of Ultra High Performance Concrete and also finding the correlation between these variables on mechanical properties of UHPC. The response surface methodology was monitored to show the influences of variables and their interactions on mechanical properties of UHPC, then, mathematical models in terms of coded variables were established by ANOVA. The offered models are valid for the variables between: quartz powder 0 to 20% of cement substitution by cement weight, quartz sand 0 to 50% of aggregate substitution by crushed limestone weight, and water curing temperature 25 to $95^{\circ}C$.

경량 UHPC의 보수용 모르타르 및 시멘트 패널로서의 활용 가능성에 대한 실험적 검토 (Experimental Review on Application of Lightweight UHPC as Repair Mortar and Cement Panel)

  • 안재성;김형기
    • 한국건설순환자원학회논문집
    • /
    • 제11권3호
    • /
    • pp.210-217
    • /
    • 2023
  • Various performances of ultra-high performance concrete (UHPC) applied with microplastics and expanded polystyrene (EPS) beads were evaluated. CompressIve and flexural strength, performance after ignition, flow-down in fresh state, and effective bond strength were evaluated. Designed weight of the cement panel with these mixtures was calculated based on the flexural strength. As a result of the experiments, it was confirmed that the EPS could reduce the density of UHPC with largest range. By maximum addition of EPS beeds, the density of UHPC decreased to 1300 kg/m3, and the compressive and flexural strengths for this mixtures were in ranges of 20-30 MPa and 15-20 MPa, respectively. On the other hand, lightest cement panel could be designed with UHPC having a density ranges about 2.0 g/cm3.

하이브리드 강섬유로 보강된 UHPC의 파괴거동 (Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제28권2호
    • /
    • pp.223-234
    • /
    • 2016
  • 이 연구에서는 노치 도입 인장시편을 사용하여 직접인장강도 실험을 통해 UHPC의 파괴거동을 살펴보고, 강섬유 혼입률에 따른 UHPC의 초기균열강도와 인장강도를 제안하였다. 실험결과 UHPC와 초기균열강도와 인장강도, 그리고 파괴에너지 등은 강섬유 혼입률이 증가할수록 증가하는 것으로 나타났다. 균열선단에서의 응집응력은 Barenblatt의 가정을 사용하여 결정되었으며, 이를 토대로 변형경화 현상이 발생하는 강섬유 혼입률이 1% 이상인 UHPC의 최대응집응력을 예측할 수 있는 간편식을 제안하였다. 인장강도는 강섬유 혼입률과 압축강도의 함수로 제안되었으며, 파괴에너지는 인장강도의 함수로 제안되었다. 제안된 간편식들은 실험값과 비교적 잘 일치하였으며, 향후 압축강도가 140~170 MPa이고, 강섬유 혼입률이 2% 이하인 UHPC에 적용가능 할 것으로 판단된다.

팽창재 및 수축저감제가 초고성능 시멘트 모르타르의 수축특성에 미치는 영향 (Effect of Expanding Admixture and Shrinkage Reducing Agent on the Shrinkage Reducing Properties of Ultra High Performance Cement Mortar)

  • 한동엽;유명열;이현수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.61-64
    • /
    • 2006
  • Comparing with traditional high performance concrete, ultra high performance concrete (UHPC) has the property of high-tenacity. However, drying shrinkage and autogenous shrinkage can be arisen as the major defect to UHPC. In this study, therefore, it was tested to reduce drying shrinkage and autogeneous shrinkage by adding expanding admixture (EA) and shrinkage reducing agent (SRA). As a result, for a case drying shrinkage, the shrinkage was decreased by 94% when EA was exchanged, and it was decreased by 64% when SRA was added. For the case of autogenous shrinkage, the mortar was expanded at early age and the shrinkage was decreased by 87% when EA was exchanged, and the shrinkage was decreased by 70% when SRA was added.

  • PDF

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.