• Title/Summary/Keyword: Ultra-high injection pressure

Search Result 38, Processing Time 0.022 seconds

Morphology and Dynamical Properties of Ultra-Relativistic Jets

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2020
  • We study the structures and dynamics of flows generated by ultra-relativistic jets on kpc scales through three-dimensional relativistic hydrodynamics (RHD) simulations. We employ a newly developed RHD code, equipped with the WENO-Z reconstruction, the SSPRK time discretization, and an equation of state that closely approximates the single-component perfect gas in relativistic regime. Exploring a set of models with various parameters, we confirm that the well-known Fanaroff-Riley dichotomy is primarily determined by the jet power, whereas the morphology of simulated jets also depends on the secondary parameters such as the momentum injection rate and the ratio of the jet to background pressure. Utilizing high resolution capabilities of the newly developed code, we examine in detail the dynamical properties of complex flows in different parts of jet-produced structures, and present the statistics of nonlinear dynamics such as shock, shear, and turbulence.

  • PDF

A Study on Soil Improvement by Using High Pressure Grouting (고압분사공법에 의한 지반개량에 관한 연구)

  • Yoo, Jang-Heun;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.998-1004
    • /
    • 2005
  • U.J.S.(Ultra Jetting System) is a new ground improvement method registered as a Utility Model No.0205798, which has fundamentally improved the existing jetting method of J.S.P.(Jumbo Special Pattern System). In this study, the uniaxial compressive strengths of improved soil-grout structures by U.J.S. and J.S.P. which have been conducted on the construction site are compared. Also, the differences between the U.J.S. and J.S.P. are analyzed by considering the role of the auger bit, the injection distance measured from the axis of boring tubes, and angle of injection measured from the horizontal. The specimens of soil-grout structures are taken from the improved soils by using the U.J.S. and J.S.P. The uniaxial tests for the samples are conducted after the curing period of 28 days. The uniaxial compressive strengths and the coefficients of elasticity of surface and distance from the axis of boring. This study shows that the mean strength of the improved structure by J.S.P. is 1.9 times greater than by J.S.P.

  • PDF

The effects of buffer layer using $\alpha$-septithiophene on the organic light emitting diode (유기 전기 발광 소자에서 $\alpha$-septithiophene을 이용한 buffer layer의 영향)

  • Yi, Ki-Wook;Lim, Sung-Taek;Shin, Dong-Myung;Park, Jong-Wook;Park, Ho-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.53-56
    • /
    • 2002
  • The effect of $\alpha$-septithiophene (${\alpha}-7T$) layers on the organic light emitting diode(OLED) was studied. The ${\alpha}-7T$ was used for a buffer layer in OLED. Hole injection was investigated and improved emission efficiency. The OLEDs structure can be described as indium tin oxide(ITO)/ buffer layer / hole transporting layer / emitting layer / electron transporting layer / LiF / Al. The hole transporting layer were composed of N,N-diphenyl-N,N-di(3-methylphenyl)-1,1-biphenyl-4,4-diamine(TPD), and N,N-di(naphthalene-1-ly)-N,N-diphenyl-benzidine( ${\alpha}$-NPD). The emitting layer, and electron transporting layer consist of tris(8-hydroxyquinolinato) aluminum($Alq_3$). All organic layer were deposited at a background pressure of less than $10^{-6}$ torr using ultra high vacuum (UHV) system. The ${\alpha}-7T$ layer can substitute the hole blocking layer, and improve hole injection properties.

  • PDF

Development of an Injection Nozzle and an Electromagnet Module for a MR Fluid Jet Polishing System (MR Fluid Jet Polishing 시스템을 위한 분사노즐 및 전자석 모듈 개발)

  • Lee, Jung-Won;Cho, Yong-Kyu;Ha, Seok-Jae;Shin, Bong-Cheol;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.767-772
    • /
    • 2012
  • Generally, abrasive fluid jet polishing system has been used for polishing of complex shape or freeform surface which has steep local slopes. In the system, abrasive fluid jet is injected through a nozzle at high pressure; however, it is inevitable to lose its coherence as the jet exits a nozzle. This problem causes incorrect polishing results because of unstable and unpredictable workpiece material removal at the impact zone. In order to solve this problem, MR fluid jet polishing method has been developed using a mixture of abrasive and MR fluid which can maintain highly collimated and coherent jet by applied magnetic field. Thus, in this study, an injection nozzle and an electromagnetic module, most important parts in the MR polishing system, were designed and verified by magnetic field and flow analysis. As the results of experiments, it can be confirmed that stable fluid jets for polishing were generated since smooth W-shapes and uniform spot size were observed regardless of standoff distance changes.

Estimation of Permeability and Initial Pressure in Reservoir by DFIT Data Analysis (DFIT 자료 해석을 통한 저류층의 투과도 및 초기압력 추정)

  • Kim, Tae Hong;Lee, Sung Jun;Lee, Kun Sang
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.169-179
    • /
    • 2013
  • Well testing in unconventional reservoirs, such as tight or shale gas formations, presents considerable challenges. It is difficult to estimate the reservoir properties in ultra-low permeability formation because of poor inflow prior to stimulation and excessive test duration. Moreover, radial flow may not develop in hydraulically fractured horizontal wells. For these reasons, the cost of test is high and the accuracy is relatively low. Accordingly, industry is turning to an alternate testing method, diagnostic fracture injection test (DFIT), which is conducted prior to the main hydraulic fracture treatments. Nowadays, DFIT are regarded as the most practical way to obtain good estimates of reservoir properties in unconventional reservoirs. Various methods may be used for interpreting DFIT data. This paper gives an explanation of those methods in detail and examines three actual field data. These show how various analysis methods can be applied to consistently interpret fracture closure pressure and time, as well as before and after closure flow regimes and reservoir properties from field data.

The KSTAR Vacuum Pumping and Fueling System Upgrade

  • Lim, J.Y.;Chung, K.H.;Cho, S.Y.;Lee, S.K.;Shin, Y.H.;Hong, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.39-39
    • /
    • 1999
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak is a nuclear fusion experimental device for a long pulse/steady-state plasma operation, adopting fully superconducting magnets. In accordance with completion of the basic design of the torus vacuum vessel and the enclosing cryostat, the vacuum pumping and gas fueling basic design has been developed to fulfil the physics requirements. The ultra-high vacuum pumping and sophisticated gas fueling system of the machine is essential to achieve such roles for optimized plasma performance and operation. Recently the vacuum exhaust system using dedicated pumping ports for the vacuum vessel and cryostat has been modified to meet more reliable and successful performance of the KSTAR[Fig. 1].In order to achieve the required base pressure of 5 x 10-9 torr, the total impurity load to the vessel internal is limited to ~5 x 10-5 torr-1/x, while the cryostat base pressure is kept as ~5 x 105 torr to mitigate the thermal load applied to the superconducting magnets. Each KSTAR fueling system will be separately capable of fueling gas at a rate of 50 torr-1/x, consistent with the given pumping throughput. In order to initiate a plasma discharge in KSTAR, the vacuum vessel is filled to a gas pressure of few 10-6 to few 10-4 torr, and additional gas injection is required to maintain and increase the plasma density during the course of the discharge period.

  • PDF

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.111-121
    • /
    • 2003
  • In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.

A Study on Leaching Characteristics of $Cr^{6+}$ in Cement Grout Materials (시멘트 그라우트재에서 $Cr^{6+}$용출특성에 관한 연구)

  • 김동우;이재영;천병식
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The aim of research is the evaluation of the $Cr^{6+}$ emission features of the liquid injection through emission experiments in varying conditions, based on a field-mixing ratio. The results showed that the content of $Cr^{6+}$ content in cement measured had an Ordinary Potland Cement (OPC) of 25.3 mg/kg, which constitute the largest portion among the other materials. Likewise, the emission experiment of homo-gel and sand-gel generally satisfied the standard of KSLT (Korea Standard Leaching Test) in waste of 1.5 mg/L, but in case of the standard of KSLT in soil the emission of OPC $Cr^{6+}$ of 4.85 mg/kg. These conditions is a little exceeded the criteria in the ‘Ga’ area in terms of Korea Soil Environmental Preservation Law. In addition, results generated by the mock-up injection facilities revealed that $Cr^{6+}$ emission increased as Water/Cement and injection pressure increased. At injection pressure higher than 4 kg/㎤, $Cr^{6+}$ emission exceeded the water preservation standard of 0.5 mg/L. Similarly, a pattern experiment of C $r^{6+}$ emission according to pH was conducted, in order to evaluate the $Cr^{6+}$ emission features of grout materials in leachate below pH 5 such as pH 4 acid rain or landfill. Results show that $Cr^{6+}$ emission dramatically increased in high acidic or basic state. It indicates that $Cr^{6+}$ emission will probably increase in an environment where grout materials are injected. On the other hand, concentration of leachate was determined in areas where grout materials are used. The results show that the concentration of emission in an ultra purity condition does not manifest intensity, and is affected in the OPC>MC>SC order. It means that the pollutants or $Cr^{6+}$ emission increases with decreasing concentration. As such, $Cr^{6+}$ emission will probably exceed the countermeasure criteria according to the types of gout materials. Similarly, high pressure or injection will cause increased $Cr^{6+}$ emission. Therefore, the selection of materials or mixing ratio should be considered in general as well as according to specific industries, based on the strength and pH of $Cr^{6+}$ emission.