• Title/Summary/Keyword: Ultra-fine cement

Search Result 49, Processing Time 0.023 seconds

An Experimental Studyon the Durability of Steel Field Reinforced Concrete Using Silica Fume (실리카흄을 혼입한 강섬유보강 콘크리트의 내구성에 관한 실험적연구)

  • 박승범;홍석주;조청휘;김부일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.285-291
    • /
    • 1998
  • During recent years, the durability of concrete structures has been considered in concret practice and material research. To preserve the brittleness of concrete as well as energy absorption and impact resistance, amount of fiber usage has greatly increased in the field of public works. Ultra fine powder, silica fume, mixed into concrete, it reduce void of concrete structure. Especially, there's a great effect for strength improvement of concrete by initial pozzolanic reactions. For these reasons, if silica fume mixed into concrete, it decrease the total void by microfilter effect . Pozzolan reaction, between cement particle and silica powder, can elaborate the micro structure of matrix. And so, in this paper, we deal SFRC for the purpose of efficiently using of industrial by-products(silica fume). Also we performed the test for durability such as freeze-thaw resistance and accelerated carbonation of SFRC using silica fume.

  • PDF

Early-Age Deformation of Very-Early Strength Latex- Modified Concrete with Ultra-Fine Fly Ash Contents (울트라파인 플라이 애시 혼입률에 따른 VES-LMC의 초기거동 특성)

  • Choi, Pan-Gil;Park, Won-Il;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1040-1046
    • /
    • 2010
  • The main disadvantage of rapid setting concrete is the occurrence of cracking because of fast hydration reaction due to high thermal expansion and shrinkage. However, if the fly ash is used in concrete, it is possible to prevent cracking since the hydration heat can be decreased. Although Very-Early Strength-Latex Modified Concrete(VES-LMC) is an excellent material, occurrence of cracking has been reported because of high hydration heat. In the present study, new method which can apply the fly ash to the VES-LMC was developed. Research for the new method to improve the safety for the cracking was conducted. Safety was confirmed by reducing the shrinkage and hydration heat in the condition of overcoming the low early-age strength. Detailed conclusions are follows. Early-age compressive strength was decreased a little with increase of UFFA content. However, 28-d compressive strength was statistically insignificant regardless of UFFA contents. If the UFFA is replaced 15% to 20% of unit cement weight in concrete, maximum shrinkage can be reduced up to 43% to 47%. Usage of UFFA in VES-LMC guarantees the safety for cracking since it is very effective to control of early-age shrinkage.

Analysis of Injection Efficiency for Cement Grouts by Model Test of Permeation in Soil (지반침투모형시험에 의한 시멘트그라우트의 주입성능 분석)

  • Song, Young-Su;Lim, Heui-Dae;Choi, Dong-Nam
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • When cement grout is used for waterproofing of grounds, important roles are played by fluidity, particle size and bleeding. The most important element which determines their characteristics is the water/cement ratio of grout. Moreover in order to improve the efficiency of soil permeation, micro cement with a smaller average diameter is used in addition to ordinary portland cement. Besides the mixing ratio and cement diameter, the condition of ground is also of fundamental importance in the efficiency of permeation. In order to evaluate grout in terms of permeation ability into ground, we need a field test of grounting, which is cost and time consuming. In this paper we present a laboratory test method in which the suitability and efficiency of grouts are simply and more practically tested. In Korea neither a test standard nor devices are available to simulate grouting in a laboratory. We devised a grout injection equipment in which grouting was reproduced in the same condition with different materials, and suggested a standard for the production of specimens. Our tests revealed that the efficiency of injection increases with the water/cement ratio. We also found that more efficiently injected is the grout with the order of decreasing size; MS8000, micro cement, and ultra fine cements, and colloidal super cement.

An Experimental Study on Mechanical Properties of Ultra-High Strength Powder Concrete (압축강도 300MPa 이상의 초고강도 분체콘크리트 개발을 위한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • In this study, ordinary Portland cement was used and the air void was minimized by using minute quartz as the filler. In addition, steel fibers were used to mitigate the brittle failure problem associated with high strength concrete. This study is in progress to make an Ultra-high strength powdered concrete (UHSPC) which has compressive strength over 300 MPa. To increase the strength of concrete, we have compared and analyzed the compressive strengths of the concretes with different mix proportions and curing conditions by selecting quartz sand, dolomite, bauxite, ferro silicon which have diameters less than 0.6 mm and can increase the bond strength of the transition zone. Ultra-high strength powdered concrete, which is different from conventional concrete, is highly influenced by the materials in the mix. In the study, the highest compressive strength of the powdered concrete was obtained when it is prepared with ferro silicon, followed in order by Bauxite, Dolomite, and Quartz sand. The amount of ferro silicon, when the highest strength was obtained, was 110%, of the weight of the cement. SEM analysis of the UHSPC showed that significant formation of C-S-H and Tobermorite due to high temperature and pressure curing. Production of Ultrahigh strength powdered concrete which has 28-day compressive strength upto 341MPa has been successfully achieved by the following factors; steel fiber reinforcement, fine particled aggregates, and the filling powder to minimize the void space, and the reactive materials.

Pre-reinforcing Grouting a Sand Gravel Layer for Tunnelling (모래자갈층에서 터널시공을 위한 굴착 전 그라우팅 보강 사례)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.466-474
    • /
    • 2016
  • Pre-reinforcement with umbrella arch grouting is conducted around a tunnel where a portion of the upper part of the tunnel is located in a sand and gravel layer. Surroundings of a first tunnel situated below groundwater table are reinforced with LW or SSM that is composed of ultra-fine cement and injected into multi-stages through large diameter steel pipes. With them, a first tunnel is safely excavated without both leaking of groundwater and fallings of sand and gravel from the arch. A second tunnel where groundwater is drained down to the bedrock is reinforced with jet grouting. The effect of the pre-grouting reinforcement is monitored by checking whether groundwater is dripping or sand or gravel is falling from the arch of the tunnels.

Evaluation of Self-Compaction Property of Section Enlargement Strengthening Concrete (단면확대 보강 적용을 위한 콘크리트의 자기충전 성능 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Song, Keum-Il;Song, Jin-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.235-242
    • /
    • 2019
  • The objective of this study is to modify the mixture proportions of concrete that were developed for section enlargement strengthening elements using a specially designed binder composed of 5% ultra-rapid hardening cement, 10% polymer, and 85% ordinary portland cement in order to assign the self-compaction property to such concrete. The self-compaction abilities of concrete were estimated by the performance criteria specified in JSCE and EFNARC provions. Test results showed that the increase in the unit binder content at the consistent water-to-bider ratio led to increase in viscosity of fresh concrete but did not exhibit the decrease in the fluidity due to a greater viscosity. The mixture proportioning of self-compaction section enlargement concrete could be considered at the following conditions: unit binder contents of $430kg/m^3{\sim}470kg/m^3$ and fine aggregate-to-total aggregate ratios of 40%~46% at the water-to-binder ratio of 38%.

An Experimental Study on Estimate of the Optimal Grout Injection Ratio for Stabilization of Mudstone fill (이암 성토지반의 안정화를 위한 최적주입률 산정에 관한 실험적 연구)

  • Lee, Jungsang;Lee, Seungjun;Kim, Yunjoong;Kim, Taesoo;Do, Jongnam;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.31-38
    • /
    • 2012
  • Water glass chemical grouts are primarily used in ground injection projects. Natural and Durable Stabilizer (NDS), Space Grout Rocket (SGR), and other similar materials composing of inorganic accelerating agents with ultra fine cement have been gaining popularity as ground improvement material in South Korea. However, there are questions as to grouting results and environmental issues caused by NDS grout. This study uses the injection method in mudstone embarkment to evaluate the differences in strength, permeability, and optimum injection volume through the use of uniaxial and triaxial compression tests and fish poison tests for NDS and SGR materials. After 28 days, results showed SGR and NDS to have a 50% increase in strength and 50% decrease in permeability with the proper injection rate at 50%.

Strength Development Mechanism of Inorganic Injection Material (무기질계 주입재의 강도발현 메커니즘)

  • Han, yunsu;Lee, Jonghwi;Kang, Hyoungnam;Baeg, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.5-12
    • /
    • 2011
  • Recently, NDS(Natural and Durable Stabilizer)method and other similar methods are composed of inorganic accelerating agent and the ultra-super fine cement have been studied as the ground improvement material in Korea. However, in the existing research, the chemical changing process of NDS in the strength development mechanism with the elapsed curing time and the principles of strength development did not give an explanation. For the popularization of the inorganic grout material, it determined that the mechanism verifying of the curing process had to be clearly preceded. Therefore, unconfined compression test, SEM and XRD analysis were performed by the elapsed curing time and were analyzed. In addition, the same trial for SGR method, that is the representative example of the water glass grout material, was selected as comparative target in order to distinguish properties of NDS more clearly. The result of experiment, the strength development mechanism of NDS could be investigated through the close correlation of the unconfined compression strength - SEM - XRD analysis, and excellence of a performance was confirmed.

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF