• Title/Summary/Keyword: Ultra-fine

Search Result 576, Processing Time 0.03 seconds

Conversion of Carbon Fiber into Silicon Carbide Fiber by Pack-Cementation

  • Joo, Hyeok-Jong;Kim, Jung-Il;Lee, Jum-Kyun
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 2000
  • Carbon fiber was reacted with gaseous silicon monoxide which is produced from pack-powder mixture at elevated temperature. As a result of the reaction, two kinds of SiC fiber were obtained. The first one was SiC fibers which were converted from carbon fiber. The fiber is constituted with polycrystal like fine grains or monolithic crystals that have a size from sub-micron to $10\;{\mu}m$. Their size depends on the temperature during the conversion reaction. The second one was ultra-fine SiC fibers that were found on the surface of the converted SiC fibers. The ultra-fine fibers have diameters from 0.08 to $0.2\;{\mu}m$ and their aspect ratio were larger than 100. The chemical composit ion of the ultra-fine fibers was analyzed using an Auger electron spectroscopy. In result, the fibers consist of 51% silicon, 38% carbon and 11% oxygen by weight.

  • PDF

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

Analysis and Prediction of (Ultra) Air Pollution based on Meteorological Data and Atmospheric Environment Data (기상 데이터와 대기 환경 데이터 기반 (초)미세먼지 분석과 예측)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.328-337
    • /
    • 2021
  • Air pollution, which is a class 1 carcinogen, such as asbestos and benzene, is the cause of various diseases. The spread of ultra-air pollution is one of the important causes of the spread of the corona virus. This paper analyzes and predicts fine dust and ultra-air pollution from 2015 to 2019 based on weather data such as average temperature, precipitation, and average wind speed in Seoul and atmospheric environment data such as SO2, NO2, and O3. Linear regression, SVM, and ensemble models among machine learning models were compared and analyzed to predict fine dust by grasping and analyzing the status of air pollution and ultra-air pollution by season and month. In addition, important features(attributes) that affect the generation of fine dust and ultra-air pollution are identified. The highest ultra-air pollution was found in March, and the lowest ultra-air pollution was observed from August to September. In the case of meteorological data, the data that has the most influence on ultra-air pollution is average temperature, and in the case of meteorological data and atmospheric environment data, NO2 has the greatest effect on ultra-air pollution generation.

Strategic Vitalization Method of AMP Installation through SWOT/AHP Analysis (SWOT/AHP 분석을 통한 전략적 AMP 설치 활성화 방안)

  • Kim, In-Ho;Lee, Kang-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.49-60
    • /
    • 2019
  • Recently the concentration of fine dust and ultra fine dust becomes so bad, which seriously threatens the health and even the life of people. So, government started to investigate several ways to reduce the amount of fine dust and ultra fine dust. From a few years ago it has been known that ships anchored at port emit a lot of pollution and seriously affect air quality of neighboring cities. To reduce the pollution emitted by ship AMP (Alternative Maritime Power Supply) has been proposed, which uses the electricity instead of bunker C oil or diesel. Many developed countries already installed AMP to improve air quality in port area. Korea is in the stage of planning to install AMP at port. However, there are many complicated problems to be handled before AMP installation. Due to huge initial cost and long period of construction ship owner and habour operating company are reluctant to AMP installation. And there are serious technological difficulties in constructing AMP in existing harbour. Lack of AMP core technology and operational difficulties of AMP are also big challenges to be conquered. In this study SWOT/AHP method is used to find strategic and efficient ways to handle above complicated challenges and then to vitalize the AMP installation.

Impact of Milling Method on Quality Parameters of Waxy Sorghum Flour (제분방법에 따른 찰수수 가루의 품질 특성)

  • Ryu, Bog-Mi;Kim, Chang-Soon
    • Korean journal of food and cookery science
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • The objective of this research was to investigate physicochemical properties of waxy sorghum flours by different milling methods (pin mill and ultra fine mill). Four different sorghum flours were used for the experiments ; PWS (pin milled whole sorghum flour), PS (pin milled sorghum flour without bran), UFWS (ultra fine milled whole sorghum flour), UFS (ultra fine milled sorghum flour without bran). The contents of crude ash and total dietary fiber were the highest in PWS. Amylose content of pin milled sorghum flour was higher than that of ultra fine milled flour. The mean particle size of pin milled flours was six times lager than ultra fine milled flours. The L values of UFS and UFWS were higher than those of PS and PWS, whereas a and b values were higher in PWS. The water binding capacity was highest in UFWS, and solubility was higher in PS and UFS. Swelling power of flours was highest in UFS. The damaged starch content was higher in PS and UFS, which means damaged starch of sorghum flours significantly affected by polishing than milling method. The pasting properties were higher in the pin milled flours. Initial pasting temperature of pin milled flour was ranging from 70.5 to $73.1^{\circ}C$, which are higher than ultra fine milled flour ($68.6^{\circ}C$). The contents of total polyphenol were higher in PWS and UFWS than those of PS and UFS, there was no difference between the two milling methods. The results of this study indicate that physicochemical properties of sorghum flour were affected by milling methods as well as bran.

Antioxidant Activities of Powdered and Ultra-fine Powdered Ulmus Davidiana var. Japonica (초미세 느릅 분말의 항산화 활성 연구)

  • Park, Jae Ho;Ahn, Joungjwa
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.3
    • /
    • pp.343-350
    • /
    • 2016
  • The antioxidant activity was examined on ultra-fine powdered (UFP) Ulmus davidiana (U. davidiana) var. japonica. The average particle size of UFP or commercial powdered (CP) was $1-3{\mu}m$ or $100{\mu}m$. The extraction was performed using either ethanol (EtOH) or hot-water. Contents of phenolic compound of CP and UFP U. davidiana extracts in EtOH was 40.38 and 65.61 mg/g, respectively. In DPPH, EtOH extract of UFP U. davidiana showed a significantly greater activity than hot-water extract at 40 and $200{\mu}g/mL$. At $200{\mu}g/mL$, the activity was over 90% in all groups. The reducing power of UFP U. davidiana var. japonica in EtOH extraction was 74.3%, which was significantly greater than in other samples (p<0.05). In addition, reducing powder was significantly higher in UFP-EtOH than in other samples at all concentrations except for $0.32{\mu}g/mL$. The above results suggest that EtOH extraction of U. davidiana showed slightly higher DPPH radical scavenging activity, and ultra-fine powder of U. davidiana extracts may show higher antioxidative activities based on reducing power.

Fabrication of Ultra Fine Grained Molybdenum and Mechanical Properties (초미세 결정립을 가지는 몰리브덴의 제조 및 기계적 특성)

  • Kim, Se-Hoon;Seo, Young-Ik;Kim, Dae-Gun;Suk, Myung-Jin;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.235-241
    • /
    • 2010
  • Mo nanopowder was synthesized by ball-milling and subsequent hydrogen-reduction of $MoO_3$ powder. To fabricate ultra fine grained molybdenum, two-step sintering and spark plasma sintering process were employed. The grain size of specimen by two-step sintering and spark plasma sintering was around $0.6\;{\mu}m$ and $0.4\;{\mu}m$, respectively. Mechanical properties of ultra fine grained Mo with relative density of above 90% were significantly improved at room and high temperatures comparing to commercial bulk Mo of 99% relative density. This result was mainly explained by the grain size refinement due to diffusion-controlled sintering.

Ultra-fine Grained Aluminum Alloy Sheets fabricated by Roll Bonding Process

  • Kim, Hyeong-Uk;Tsuji, Nobuhiro
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Ultra-fine grained (UFG) Al alloys, which have submicron grain structures, are expected to show outstanding high strength at ambient temperature and excellent superplastic deformation at elevated temperatures and high strain rate. In order to get the UFG microstructure, various kind of severe plastic deformation (SPD) processes have been developed. Among these processes, accumulative roll bonding (ARB) process is a promising process to make bulky Al sheets with ultrafine grained structure continuously. The purpose of the present study is to clarify the grain refinement mechanism during the ARB process and to investigate on the effects of ultra-fine grained structure on the mechanical properties. In addition, UFG AA8011 alloy (Al-0.72wt%Fe-0.63wt%Si) manufactured by the ARB had fairly large tensile elongation, keeping on the strength. In order to clarify the reason for the increase of elongation in the UFG AA8011 alloy, detailed microstructural and crystallographic analysis was performed by TEM/Kikuchi-line and SEM/EBSP method. The unique tensile properties of the UFG AA8011 alloy could be explained by enhanced dynamic recovery at ambient temperature, owing to the large number of high angle boundaries and the Al matrix with high purity.

  • PDF

Enhancement of Lowsintering Temperature and Electromagnetic Properties of (NiCuZn)-Ferrites for Multilayer Chip Inductor by Using Ultra-fine Powders (초미세 분말합성에 의한 칩인덕터용 (NiCuZn)-Ferrites의 저온소결 및 전자기적 특성 향상)

  • 허은광;강영조;김정식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2002
  • In this study, two different (NiCuZn)-ferrite which were fabricated by using ultra-fine powders synthesized by the wet processing and conventionally commercialized powder, were investigated and compared each other in terms of the low temperature sintering and electromagnetic properties. Composition of x and w in $(Ni_{0.4-x}Cu_xZn_{0.6})_{1+w}(Fe_2O_4)_{1-w}$ were controlled as 0.2 and 0.03, respectively. The sintering temperature were $900^{\circ}C$ for ultra-fine powders by way of initial heat treatment and $1150^{\circ}C$ for commercialized powders. The (NiCuZn)-ferrite by ultra-fine powders showed love. sintering temperature than that of commercialized powders by over $200^{\circ}C$, and excellent electromagnetic properties such as the quality factor which is a important factor in the multi-layered chip inductor. In addition, characteristics of B-H hysteresis, crystallinity, microstructure and powder morphology were analyzed by a vibrating sample method(VSM), x-ray diffractometer(XRD), transmission electron microscope (TEM) and scanning electron microscope(SEM).

  • PDF