DOI QR코드

DOI QR Code

Analysis and Prediction of (Ultra) Air Pollution based on Meteorological Data and Atmospheric Environment Data

기상 데이터와 대기 환경 데이터 기반 (초)미세먼지 분석과 예측

  • Received : 2021.08.10
  • Accepted : 2021.08.21
  • Published : 2021.08.30

Abstract

Air pollution, which is a class 1 carcinogen, such as asbestos and benzene, is the cause of various diseases. The spread of ultra-air pollution is one of the important causes of the spread of the corona virus. This paper analyzes and predicts fine dust and ultra-air pollution from 2015 to 2019 based on weather data such as average temperature, precipitation, and average wind speed in Seoul and atmospheric environment data such as SO2, NO2, and O3. Linear regression, SVM, and ensemble models among machine learning models were compared and analyzed to predict fine dust by grasping and analyzing the status of air pollution and ultra-air pollution by season and month. In addition, important features(attributes) that affect the generation of fine dust and ultra-air pollution are identified. The highest ultra-air pollution was found in March, and the lowest ultra-air pollution was observed from August to September. In the case of meteorological data, the data that has the most influence on ultra-air pollution is average temperature, and in the case of meteorological data and atmospheric environment data, NO2 has the greatest effect on ultra-air pollution generation.

석면, 벤젠과 같이 발암물질 1급인 미세먼지는 각종 질병에 원인이 되고 있다. 초 미세먼지 확산은 코로나 바이러스 확산의 중요한 원인중 하나이다. 본 논문은 2015년부터 2019년까지 서울시 평균 기온, 강수량, 평균 풍속등의 기상 데이터와 SO2, NO2, O3,등의 대기 환경 데이터를 기반으로 미세먼지와 초 미세먼지를 분석하고 예측한다. 계절별과 월별로 미세먼지와 초미세먼지 현황을 파악·분석하며 미세먼지를 예측하기 위해 기계학습 모델 중 선형회귀, SVM, 앙상블 모델을 이용하여 비교 분석하였다. 또한 미세먼지와 초 미세먼지 발생에 영향을 미치는 중요한 피쳐(속성)를 파악한다. 본 논문이 파악한 결과 3월에 가장 (초)미세먼지가 높았고, 8월에서 9월까지 (초)미세먼지가 가장 낮았다. 기상 데이터일 경우 (초)미세먼지에 가장 영향을 미치는 데이터가 평균 기온이며, 기상 데이터와 대기 환경 데이터일 경우 NO2가 (초)미세먼지 발생에 가장 크게 작용하였다.

Keywords

Acknowledgement

This Paper was supported by research Fund of Sangji University in 2019.

References

  1. M. Travaglio, Y. Yu, R. Popovic, L. Selley, N. Lea and L. M. Martins, "Links between air pollution and COVID-19 in England", Jour. of Environmental Pollution, Vol. 268, Jan. 2021
  2. X. Wu, R. C. Nethery, B.M. Sabath, D. Braun and F. Dominici, "Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study", Jour. of Science Advances, Vol 6, No. 45, Nov. 2020
  3. K. C. Lee and I. J. Hwang, " Characteristics of PM2.5 in Gyeongsan Using Statistical Analysis", Jour. of Korean Society for Atmospheric Environment, Vol. 31, No. 6, pp. 520-529, Dec. 2015 https://doi.org/10.5572/KOSAE.2015.31.6.520
  4. S. W. Joun, J. Y. Choi and J. H. Bae, " Performance Comparison of Algorithms for the Prediction of Fine Dust Concentration" , Conf. of Korea Information Science Society, pp. 775-777, Dec. 2017
  5. Y. M. Seo and J. H. Yom, "Comparison of LSTM-based Fine Dust Concentration Prediction Method using Meteorology Data", Conf. of Korea Society of Surveying, Geodesy, Photogrammetry, and Cartography, pp. 117-120, Mar. 2019
  6. S. H. Sung, S. J. Kim and M. H. Ryu, "A Comparative Study on the Performance of Machine Learning Models for the Prediction of Fine Dust: Focusing on Domestic and Overseas Factors", Jor. of Korea Society of Innovation, Vol. 15, Num. 4, pp. 339-357, Nov. 2020
  7. C. H. Hwang and K. W. Shin, "CNN-LSTM Combination Method for Improving Particular Matter Contamination (PM2.5) Prediction Accuracy", Journal of the Korea Institute of Information and Communication Engineering, Vol. 24, No. 1, pp. 57-64, Jan. 2020 https://doi.org/10.6109/JKIICE.2020.24.1.57
  8. J. Y. Lee, M. J. Choi and J. K. Yang, "Ensemble Method for Predicting Particulate Matter and Odor Intensity", Jour. of the Society of Korea Industrial and Systems Engineering, Vol. 42, No.4, pp. 203-210, Dec. 2019 https://doi.org/10.11627/jkise.2019.42.4.203