• Title/Summary/Keyword: Ultra-Wideband Receiver

Search Result 69, Processing Time 0.029 seconds

Frequency Synthesizer Design for Ultra-Wide Band Receiver (초광대역 수신기용 주파수 합성기 설계)

  • Koo, Bon-San;Lee, Moon-Que;Kim, Hyuk-Je;Hong, Hun-Jin
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.313-317
    • /
    • 2003
  • In this paper, ultra-wideband frequency synthesizer which operates at S-band ($2{\sim}4GHz$) is designed. Designed frequency synthesizer shows the frequency range of $2.2{\sim}4.0GHz$ and output power of $-2{\sim}3dBm$. Phase noise characteristics are measured below -92.0dBc/hz at 100kHz offset frequency in entire sweep range and lock time is measured below 3.55ms. Spurious level is below -62.33dBc at comparison frequency of 1MHz.

  • PDF

Characterization of Body Shadowing Effects on Ultra-Wideband Propagation Channel

  • Pradubphon, Apichit;Promwong, Sathaporn;Chamchoy, Monchai;Supanakoon, Pichaya;Takada, Jun-Ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.219-222
    • /
    • 2004
  • There are several factors that disturb an Ultra-Wideband (UWB) radio propagation in an indoor environment such as path loss, shadowing and multipath fading. These factors directly affect the quality of the received signal. In this paper, we investigated the influence of the human body shadowing on UWB propagation based on measured wireless channel in an anechoic chamber. The characteristics of the UWB channel including the transmitter and the receiver antenna effects are acquired over the frequency bandwidth of 3${\sim}$11 GHz. The major factors such as the power delay profile (PDP), the angular power distribution (APD), the pulse distortion and the RMS delay spread caused by the human body shadowing are presented.

  • PDF

MIMO Detection Algorithms in Binary PAM DS UWB Communication (이진 PAM DS UWB 통신에서 MIMO 검출 기법)

  • Kang, Yun-jeong;Kim, Gil-nam;Kim, Sang-choon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.447-450
    • /
    • 2009
  • In this paper, binary pulse-antipodal modulation (2PAM) direct-sequence (DS) ultra-wideband (UWB) system is applied to multiple input multiple output (MIMO) system using vertical bell lab layered space-time (V-BLAST) structure to achieve high-data-rate communications over indoor wireless channels. The relationship between antenna dimension and BER performance of 2PAM DS UWB MIMO system is discussed. In the receiver of UWB-MIMO system, various MIMO detection algorithms such as zero-forcing (ZF), ZF-ordered successive interference cancellation (OSIC), minimum-mean-square-error (MMSE), MMSE-OSIC and maximum likelihood (ML) are comparatively studied.

  • PDF

Implementation of Ultra-Wideband Microstrip Bandpass Filter for 10 Gb/s Wireless Transmission THz Transmitter and Receiver (10 Gb/s 무선 전송 THz 송수신기를 위한 초광대역 마이크로스트립 대역통과필터의 구현)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, a microstrip bandpass filter(BPF) with 3 dB bandwidth of more than 50 % at center frequency of 30 GHz was implemented. The implemented BPF is to be used as ASK(Amplitude Shift Keying) transmission and reception filters in IF band for THz transmitter and receiver capable of 10 Gb/s wireless data transmission. The microstrip BPF with ultra-wideband characteristics was implemented using a stepped-impedance lowpass filter(LPF) and a composite quarter-wave short stubs where the LPF is functioning as attenuating the upper stopband and quarter-wave short stubs is functioning as attenuating the lower stopband. The measured results are as follows; the insertion loss is 0.65 dB at 30 GHz, the stopband characteristics are -10 dB and -16 dB at 10 GHz and 50 GHz, respectively, and the passband flatness is ${\pm}0.5$ dB at 20~40 GHz.

Recurrent Neural Network Based Distance Estimation for Indoor Localization in UWB Systems (UWB 시스템에서 실내 측위를 위한 순환 신경망 기반 거리 추정)

  • Jung, Tae-Yun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.494-500
    • /
    • 2020
  • This paper proposes a new distance estimation technique for indoor localization in ultra wideband (UWB) systems. The proposed technique is based on recurrent neural network (RNN), one of the deep learning methods. The RNN is known to be useful to deal with time series data, and since UWB signals can be seen as a time series data, RNN is employed in this paper. Specifically, the transmitted UWB signal passes through IEEE802.15.4a indoor channel model, and from the received signal, the RNN regressor is trained to estimate the distance from the transmitter to the receiver. To verify the performance of the trained RNN regressor, new received UWB signals are used and the conventional threshold based technique is also compared. For the performance measure, root mean square error (RMSE) is assessed. According to the computer simulation results, the proposed distance estimator is always much better than the conventional technique in all signal-to-noise ratios and distances between the transmitter and the receiver.

A Joint Timing Synchronization, Channel Estimation, and SFD Detection for IR-UWB Systems

  • Kwon, Soonkoo;Lee, Seongjoo;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.501-509
    • /
    • 2012
  • This paper proposes a joint timing synchronization, channel estimation, and data detection for the impulse radio ultra-wideband systems. The proposed timing synchronizer consists of coarse and fine timing estimation. The synchronizer discovers synchronization points in two stages and performs adaptive threshold based on the maximum pulse averaging and maximum (MAX-PA) method for more precise synchronization. Then, iterative channel estimation is performed based on the discovered synchronization points, and data are detected using the selective rake (S-RAKE) detector employing maximal ratio combining. The proposed synchronizer produces two signals-the start signal for channel estimation and the start signal for start frame delimiter (SFD) detection that detects the packet synchronization signal. With the proposed synchronization, channel estimation, and SFD detection, an S-RAKE receiver with binary pulse position modulation binary phase-shift keying modulation was constructed. In addition, an IEEE 802.15.4a channel model was used for performance comparison. The comparison results show that the constructed receiver yields high performance close to perfect synchronization.

Joint Estimation of TOA and DOA in IR-UWB System Using Sparse Representation Framework

  • Wang, Fangqiu;Zhang, Xiaofei
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.460-468
    • /
    • 2014
  • This paper addresses the problem of joint time of arrival (TOA) and direction of arrival (DOA) estimation in impulse radio ultra-wideband systems with a two-antenna receiver and links the joint estimation of TOA and DOA to the sparse representation framework. Exploiting this link, an orthogonal matching pursuit algorithm is used for TOA estimation in the two antennas, and then the DOA parameters are estimated via the difference in the TOAs between the two antennas. The proposed algorithm can work well with a single measurement vector and can pair TOA and DOA parameters. Furthermore, it has better parameter-estimation performance than traditional propagator methods, such as, estimation of signal parameters via rotational invariance techniques algorithms matrix pencil algorithms, and other new joint-estimation schemes, with one single snapshot. The simulation results verify the usefulness of the proposed algorithm.

A Novel M-ary Code-Selected Direct Sequence BPAM UWB Communication System

  • Bai, Zhiquan;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.95-98
    • /
    • 2006
  • In this letter, a novel M-ary code-selected direct sequence (DS) ultra-wideband (UWB) communication system is presented. Our purpose is to achieve a high data rate by an M-ary code-selected direct sequence bipolar pulse amplitude modulation (MCSDS-BPAM) scheme. In this system, a particular DS code sequence is selected by the $log_2M$/2 bits from the DS gold code set. This scheme can accomplish both a high data rate without increasing the system bandwidth or changing the pulse shape and improve the BER with an increase of modulation level M even at a lower signal-to-noise ratio (SNR). The receiver signal processing algorithm is given for an MCSDS-BPAM UWB system over an ideal AWGN channel and correlation receivers.

  • PDF

Performance Analysis of M-ayy PPM Ultra-wideband Multiple Access Systems Using Gaussian Monopulse (가우시안 모노펄스를 이용하는 M-ary PPM 초광대역 다중접속시스템의 성능해석)

  • Kwak, Jae-Min;Lee, Sung-Chul;Cho, Sarm-Goo;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.229-233
    • /
    • 2003
  • In this paper we theoretically analyze the probability of error for M-ary pulse position modulation (PPM) ultra-wideband (UWB) multiple access system using Gaussian monopulse. The optimum detection of UWB signals using M-ary orthogonal PPM in additive white Gaussian noise (AWGN) and multiple access interference (MAI) is considered, then receiver signal to noise power ratio (SNR) and upper bound fur the bit error rate (BER) are derived. Numerical results considering some practical parameters are presented.

  • PDF

On the Performance of Multi-User 2PPM-TH-UWB SIMO Systems in Multipath Channels

  • Baek, Sun-Young;Kang, Yun-Jeong;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.286-291
    • /
    • 2009
  • In this paper, the performance of ultra-wideband (UWB) single input multiple output (SIMO) systems to achieve high data rate communications is studied in dense multipath environments. The effects of spatial and temporal diversities on the performance of multi-user time-hopping UWB systems using binary pulse position modulation (2PPM) are analyzed. The reduced-complexity Rake receivers based on the selective combining (called SRake) and partial combining (called PRake) are considered. The theoretical and simulation results show that the BER performance of the UWB system can be enhanced as the number of array elements and/or Rake fingers increases. Moreover, we observe that SRake is more effective for the IR-UWB systems to achieve a good BER performance, as compared with PRake.