• Title/Summary/Keyword: Ultra-Precision machining

Search Result 300, Processing Time 0.033 seconds

Development of Nano Positioning Stage using PZT Actuator (압전 액츄에이터를 이용한 초정밀 위치제어장치 개발)

  • 정상화;차경래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.214-218
    • /
    • 2002
  • In recent years, precision positioning stage is demanded for some industrial fields such as semi-conductor lithography, ultra precision machining, and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of 3-axis positioning, characteristics of motion and resolution are verified.

  • PDF

A Study on the Ultra-precision Machining of National Standard Electrode by the Magnetic-Electrolytic-Abrasive Polishing System (자기전해 가공시스템에 의한 국가 표준원기의 초정밀 표면 가공에 관한연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.137-142
    • /
    • 1996
  • Magnetic-electrolytic-abrasive polishing system(MEAPS) was developed for machining national standard electrode and its finishing characteristics was analyzed. The paper describes the operational principle of MEAP system by experimental results. The finishing characteristics and optimal finishing condition for national standard electrodes were experimented and analyzed. As a result, MEAPS can improve straightness as well as surface roughness.

  • PDF

Input Shaping for Servo Control of Machine Tools (공작기계의 서보제어와 입력성형기법)

  • Kim, Byung-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1011-1017
    • /
    • 2011
  • Servo control loops are a core part in the control architecture of machine tools. Servo control loops manage acceleration, velocity and position of all the axes in a machine tool based on commands. The performance of servo control loops sets the basis for quality of production paris and cycle time reduction. First, this paper presents a general control architecture of machine tools and several control schemes in literature, which can be applicable to machine tools control; including Zero Phase Error Tracking Control (ZPETC) and Cross Coupling Control (CCC). After that, modem control strategies to mitigate the problem of high speed machining are reviewed. In high speed machining, high accelerations excite the machine structure up to high frequencies, thereby exciting the structure's modes of vibration. These structural vibrations need to be damped if accurate positioning or trajectory following is required. Input shaping is an attractive option in dealing with structural vibrations. The advantages and drawbacks of using input shaping technique for machine tools are discussed in detail.

The Control and Motion Characteristics of 5 axis Vacuum Stage for Electron Beam Lithography (전자빔 가공기용 진공 5축 스테이지의 제어 및 운동특성)

  • 이찬홍;박천홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.890-893
    • /
    • 2004
  • The ultra precision machining in industrial field are increased day by day. The diamond turning has been used generally, but now is faced with limitation of use, because of higher requirement of production field. The electron beam lithography is alternative in machining area as semiconductor production. For EB lithography, 5 axis vacuum stage is required to duplicate small and large patterns on wafer. The stage is composed of 2 rotational axis and 3 translational axis with 5 DC servo motors. The positioning repeatability and resolution of Z axis feed unit are 3.21$\mu$m and 0.5 $\mu$m/step enough to apply to lithography.

  • PDF

A study on Corrective Polishing (형상수정 폴리싱에 관한 연구)

  • 김의중;신근하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.950-955
    • /
    • 2001
  • For the development of an ultra-precision CNC polishing system including on-machine measurement system, we study a corrective polishing algorithm. We analyze and test the unit removal profiles for a ball type polishing tool. Using these results we calculate dwell time distributions and residual errors for a target removal shape. We use the polishing simulation method and feed rate calculation method for the dwell time calculation. We test corrective polishing algorithm with an optical glass. The target removal shape is a sine wave that has amplitude 0.3 micro meters. We find this polishing process has a machining resolution of nanometer order and is effective for sub-micrometer order machining. This result will be used for the software development of the CNC polishing system.

  • PDF