• Title/Summary/Keyword: Ultra-Precision Machine

Search Result 275, Processing Time 0.034 seconds

Numerical Analysis and Experiment of Environmental Control Cell for Ultra-nano Precision Machine (초정밀 가공기를 위한 환경 제어용 셀에 관한 실험 및 해석적 연구)

  • Oh, S.J.;Kim, C.S.;Cho, J.H.;Kim, D.Y.;Seo, T.B.;Ro, S.K.;Park, J.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.824-830
    • /
    • 2013
  • In ultra-precision machining, the inside temperature should be controlled precisely. The important factors are environmental conditions (outside temperature, humidity) and temperature conditions (cutting heat, spindle heat). Thus, in this study, an environmental control cell for the ultra-precision machine that could control the inside temperature and minimize effects of the surrounding environment to achieve a thermal deformation of less than 400nm of a specimen was designed and verified through C.F.D. Further, a method that could control the temperature precisely by using a blower, heat exchanger and heater was evaluated. As a result, this study established a C.F.D technic for the environmental control cell, and the specimen temperature was controlled to be within $17.465{\pm}0.055^{\circ}C$.

Dynamic Analysis on Belt-Driven Spindle System of Machine Tools

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.82-89
    • /
    • 2002
  • The need of ultra-precision machine tools, which manufacture and machine the high precision parts used in computers, semi-conductors and other precision machines, has been increased over years. Therefore it is important to design the driving parts, which affect significantly on their performances. In this paper, the dynamic analyses on the belt-driven system were explored. Relation of the acoustical natural frequency and the tension of belt was derived and presented through experiments. Also, while the dynamic loads on motor system were changed, dynamic deflections were calculated through finite element analysis. Nonlinear characteristics of the bearings having an effect on the dynamic performance were studied and the belt connecting the motor (driving part) to spindle of a machine tool (driven part) was modeled as truss and beam elements fur simulations under various conditions, and a beam element model was verified to be more useful.

Prediction of Machine Tool's Energy Consumption during the Cutting Process (공작기계의 절삭공정 소비 에너지 예측기술)

  • Lee, Chan-Hong;Hwang, Jooho;Heo, Segon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • In this paper, a simulation based estimation method of energy consumption of the spindle and feed drives for the NC machine tool during the cutting process is proposed. To predict energy consumption of the feed drive system, position, velocity, acceleration and jerk of the table are analyzed based on NC data and then the power and energy are calculated considering friction force and mass of the stages. Energy consumption of the spindle is estimated based on models from acceleration motion of rotating parts, friction torque and power loss of motors. Moreover, simulation models of cutting power and energy for the material removal along the NC tool paths are proposed.

Position Control of Ultra-Precision Machine Tool Post using Piezoelectric Material(1) (압전 재료를 이용한 초정밀 가공기용 공구 위치 제어(1))

  • 김승한;송하성;송재욱;김의중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.162-166
    • /
    • 1996
  • This paper presents a position control of ultra-precision machine tool post using piezoelectric material. A stack-type piezoelectric actuator Is employed in a hinge-type tool holder. An assumed linear transfer function of the practical nonlinear plant is established through the comparison of transfer functions and step responses in the experiments and the simulations. Several types of feedforward/feedback controllers are designed via computer simulations using the assumed linear transfer function. The position tracking control experiments are undertaken to show the control efficiency of each controller.

  • PDF

A study on the Ultra-precision Inner Cutting of Al-alloy (알루미늄합금의 초정밀 내면절삭)

  • 김우순;강상도;김동현;난바의치
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.362-367
    • /
    • 2003
  • Recentlry, High accuracy and precision are required in various industrial field. To obtain the surface roughness with range from several 10nm to several nm in inner cutting, we need a ultra-precision machine, single diamond tool, cutting condition, and the study of materials. It is very difficult to obtain the mirror surface without new technique. In this paper, Using the new tool holder as well as the ultra precision diamond cutting, we directly processed the inside of an aluminum alloy in order to obtain mirror surface. We have considered the length of tool holder when we design the tool holder. From experimental results, we believe that the new tool holder will improve inner cutting.

  • PDF

The Simulation of Cutting force Estimate Model at Micro-Stage for Ultra Precision Cutting Machine of Nano Part (나노부품 초정밀가공기용 마이크로스테이지의 절삭력 예측모델 시뮬레이션)

  • 김재열;심재기;곽이구;안재신;한재호;노기웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.173-178
    • /
    • 2003
  • Recently, according to the development of mechatronics industry that was composed of NT, ST, IT, RT and etc, the 1 necessity of nano-parts was increased. Because of the necessity, this research was started for improving work precision of the parts as fixing UPCU( Ultra Precision Cutting Unit)on lathe. So, in this research we executed the modeling of UPCU (Ultra Precision Cutting Unit) by the application of PZT, the relationship between the displacement of tool in UPCU and the cutting force of it has been in take a triangular position in the case of plane cutting. The modeling of system that is containing the fine displacement was performed. Also, we found like to find the optimal cutting condition through the simulation of relationship between the displacement and the cutting force.

  • PDF

FEM Modeling Automation of Machine Tools Structure (공작기계 구조물의 전산 모델링 자동화)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1043-1049
    • /
    • 2012
  • The FEM analysis of machine tools is the general analysis process to evaluate machine performance in the industry for a long time. Despite advances in FEM software, because of difficult simplicity of CAD drawing, little experience of joints stiffness modeling and troublesome manual contact area divide for bindings, the industry designers think the FEM analysis is still an area of FEM analysis expert. In this paper, the automation of modeling process with simplicity of drawing, modeling of joints and contact area divide is aimed at easy FEM analysis to enlarge utilization of a virtual machine tools. In order to verify the effects of modeling automation, a slant bed type model with tilting table is analyzed. The results show FEM modeling automation method only needed 45 minutes to complete the whole modeling process, while manual modeling method requires almost one month with 8200 calculations for coordinate transformations and stiffness data input.

The property of WC(Co 0.5%) Ultra precision turning for Glass Lens molding (Glass Lens 성형용 초경합금(Co 0.5%)의 초정밀 절삭특성)

  • Kim, Min-Jae;Lee, Jun-Key;Kim, Tae-Kyoung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.41-41
    • /
    • 2010
  • In this research, to study tungsten carbide alloy(Co 0.5%) ultra precision turning possibility that is used Glass Molding Press(GMP) using conventional (Rake angle $-25^{\circ}$) single crystal diamond bite observed machining surface condition, surface roughness($R_a$), diamond bite cutting edge after tungsten carbide alloy ultra precision turning. Suggested and designed optimum chamfer bite shape to suggest ultra precision optimum bite using Finite Element Analysis(FEM). After machining tungsten carbide alloy ultra precision turning using optimum chamfer bite and comparing with conventional bite machine result and studied optimum chamfer bite design inspection and also tungsten carbide ultra precision turning possibility for high temperature compression glass lens molding.

  • PDF

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-Il;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1469-1474
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

  • PDF