• 제목/요약/키워드: Ultra-Fine Grains

검색결과 41건 처리시간 0.024초

누적압연접합(Accumulative Roll-Bonding, ARB)에 의한 Al의 결정립 미세화와 마모 특성 연구 (An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Fine Grained Pure Al Fabricated by ARB Process)

  • 박관순;이태오;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2000
  • Ultra-fine grains were produced in pure Al using an Accumulative Rolling-Bonding (ARB) process. After several cycles of the ARB process, pure Al sheets were filled with the ultra-fine grains whose diameters were several hundred nano-meters. With ARB cycles, the nature of grain boundaries of the ultra-fine grains changed from diffusive sub-boundaries to well-defined high angle boundaries. After 7 cycles, ultra-fine polycrystals with large misorientations between neighboring grains were obtained. Sliding wear tests using a pin-on-disk type wear tester were co ducted on the ultra-fine grained pure Al. Wear rates of pure Al increased with the increase of ARB cycle numbers in spite of the increase in hardness. Worn surfaces and cross-sections were examined with optical microscopy (OM) and scanning electron microscopy (SEM) In investigate the wear mechanism of the ultra-fine grained pure Al.

  • PDF

누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구 (An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by a Accumulative Roll-Bonding Process)

  • 하종수;강석하;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.84-87
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with large misorientations between neighboring grains were obtained. The grain size was about 0.2$\mu\textrm{m}$. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear teats of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surfaces of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

  • PDF

누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구 (An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by an Accumulative Roll-Bonding Process)

  • 하종수;강석하;김용석
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.376-381
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with a large misorientation between neighboring grains were obtained. The grain size was about 0.2 $\mu$m. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear tests of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surface of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

초미립 SiC가 첨가된 질화규소에서 미세구조에 미치는 Bedding의 영향 (Effect Of Bedding on the Microstructure of Si3N4 with Ultrafine SiC)

  • 이홍한;김득중
    • 한국분말재료학회지
    • /
    • 제10권1호
    • /
    • pp.57-62
    • /
    • 2003
  • The effect of bedding on the microstructure of $Si_3N_4$ added with ultra-fine SiC was investigated. The bedding and the addition of ultra-fine SiC effectively inhibited grain growth of $Si_3N_4$ matrix grain. The microstructures of the specimens sintered with bedding powder consisted of fine-grains as compared with the specimens sintered without bedding powder. In addition, the grain size and the difference of grain size between the specimens sintered with bedding and without bedding was reduced with increasing SiC content. Some ultra-fine SiC particles were trapped in the $Si_3N_4$ grains growed. The number of SiC particles trapped in the $Si_3N_4$ grains increased with increasing the grain growth. When ultra-fine SiC particles were added in the $Si_3N_4$ ceramics, the strength was improved but the toughness was decreased, which was considered to be resulted from the decrease of the grain size.

누적압연접합에 의한 6061 Al 합금의 결정립 미세화와 마멸 특성 연구 (An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Eine Grained 6061 Al Alloy Fabricated by ARB)

  • 이태오;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.147-150
    • /
    • 2001
  • The ARB (Accumulative Rolling Bonding) Process was applied to a 6061 Al alloy to obtain ultra-fine grains. After 4 ARB cycles at $315^{\circ}C$, original equilibrium large grains were transformed to ultra-fine grains of several hundred nano-meter size with nonequilibrium grain boundaries. At lower number of cycles, microsutcture of highly-tangled dislocation cells were observed. Large grains and coarsened precipitates filled the microstructure of specimens experienced ARB cycles more than 5. Sliding wear tests using a pin-on-disk type wear tester were conducted on the ARB processed 6061 Al alloy plate. Wear rates of the 6061 Al alloy increased with the increase of ARB cycle number as well as the applied load. Worn surfaces and debris, cross-sections of the worn specimen were examined with scanning electron microscopy (SEM) to investigate the wear mechanism of the ultra-fine grained 6061 Al Tensile properties of the 6061 Al alloy were also studied and used to correlate the wear test results with the microstructures, which evolved continuously with the number of ARB cycles.

  • PDF

AA3004에서 전단변형 미세조직 및 집합조직의 형성 (Formation of Shear Texture and Microstructure in AA3004 Sheet)

  • 이강노;김종국;김훈동;황병복;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.184-186
    • /
    • 2002
  • The evolution of texture and microstructure during warm rolling and subsequent annealing in aluminium 3004 alloy sheet was investigated by X-ray texture measurements and microstructure observations. Warm rolling at 250$^{\circ}C$ led to the development of strong through thickness texture gradients with shear textures at the surface layer and a regular rolling texture in the center of the sheets. FEM simulations indicated that these texture gradients are caused by pronounced strain gradients throughout the sheet thickness. Upon recrystallization annealing, in the sheet center the characteristic cube-recrystallization texture developed, while in the surface layers with a pronounced shear texture continuous recrystallization took place which led to the formation of a very fine grained microstructure. It is concluded that the very complex strain history in the near-surface layers together with the resulting high work-hardening rate gave rise to the formation of the ultra-fine grains with an average size smaller than 2$\mu\textrm{m}$.

  • PDF

ECAP으로 제조된 초미세림 Al-Mg 합금의 동적 변형거동 (High-Strain Rate Deformation of Ultra-Fine Grained Al-Mg Alloys Fabricated by Equal-Channel Angular Pressing)

  • 김양곤;고영건;신동혁;이성학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.306-309
    • /
    • 2009
  • The influence of equal-channel angular pressing (ECAP) route on dynamic deformation behavior of ultra-fine grained Al-4.4%Mg alloys was investigated in this study. The 8-pass ECAPed specimens consisted of ultra-fine grains of $0.5{\mu}m$ in size, and contained the considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. The result of dynamic torsional tests indicated that the maximum shear stress and fracture shear strain were lowest in the specimen deformed by ECAP via route A among the 8-pass ECAPed specimens. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity related to ECAP routes.

  • PDF

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

ECAP으로 제조된 초미세립 알루미늄 합금의 동적 변형거동에 미치는 어닐링 온도의 영향 (Effect of Annealing Temperature on Dynamic Deformation Behavior of Ultra-Fine-Grained Aluminum Alloys Fabricated by Equal Channel Angular Pressing)

  • 김양곤;고영건;신동혁;이종수;이성학
    • 대한금속재료학회지
    • /
    • 제46권9호
    • /
    • pp.563-571
    • /
    • 2008
  • The influence of annealing treatment on dynamic deformation behavior of ultra-fine grained aluminum alloys was investigated in this study. After equal-channel angular pressing at $200^{\circ}C$, most of the grains were considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various annealing treatments for 1 hour, resultant microstructures were found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery would be dominantly operative, whereas grain growth was pronounced above $250^{\circ}C$. The tensile test results showed that yield and ultimate tensile strengths decreased, but elongation-to-failure and strain hardening rate increased with increasing annealing temperature. The dynamic deformation behavior retrieved with a series of torsional tests was explored with respect to annealed microstructures. Such mechanical response was analyzed in relation to resultant microstructure and fracture mode.

누적압연접합 공정에 의해 제조된 초미세립 6061 Al 합금의 열적 안정성과 건식 미끄럼 마멸 거동 (Thermal Stability and Dry Sliding Wear Behavior of Ultra-Fine Grained 6061 Al Alloy Processed by the Accumulative Roll-Bonding Process)

  • 김용석
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.71-77
    • /
    • 2005
  • Thermal stability and dry sliding wear behavior of ultra-fine grained 6061 Al alloy fabricated by an accumulative roll-bonding (ARB) process have been investigated. After 4 ARB cycles, an ultra-fine grained microstructure of the 6061 Al alloy composed of grains with average size of 500nm, and separated mostly by high-angle boundaries was obtained. Though hardness and tensile strength of the ARB processed Al alloy increased with ARB cycles up to 4 cycles, the processed alloy exhibited decreased ductility and little strain hardening. Thermal stability of the ARB-processed microstructure was studied by annealing of the severely deformed alloy at $423K{\sim}573K$. The refined microstructure of the alloy remained stable up to 473K, and the peak aging treatment of the alloy at 450K for 8 hrs increased the thermal stability of the alloy. Sliding-wear rates of the alloy increased with the number of ARB cycles in spite of the increased hardness with the cycles. Wear mechanisms of the ultra-fine grained alloy were investigated by examining worn surfaces, wear debris, and cross-sections by a scanning electron microscopy (SEM).