• Title/Summary/Keyword: Ultra precision

Search Result 925, Processing Time 0.029 seconds

A Study on Dynamic Modeling of the Vibration Isolation System for the Ultra Precision Measurement (초정밀작업을 위한 제진시스템의 동역학 모델링 연구)

  • Son, Sung-Wan;Jang, Sung-Ho;Baek, Jae-Ho;Chun, Chong-Keun;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The anti-vibration tables that use air suspensions as dampers have been widely used due to their high anti-vibration performance in wide frequency band. However, they face a problem of easily accelerating the vibration when triggered by external force because their air suspensions have low rigidity and dampness. In response, there has been a study on active/semi-active dampers that use only the passive components like air suspensions to complement the passive-control format. Thus, we have dynamically analyzed the active/semi-active control of such passive anti-vibration tables. To demonstrate the anti-vibration table's control system, we have also constructed a kinetic model based on the physical characteristics of an anti-vibration table with 6 degrees of freedom and verified its applicability through analysis and experiments.

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

Experimental evaluation of machining limit in machining V-shaped microgrooves on electroless nickel plated die materials (무전해 니켈도금 소재의 초정밀 가공에서 V-형상 미세 패턴 가공한계에 대한 실험적 평가)

  • Kim, Hyun Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.263-267
    • /
    • 2013
  • The continuing demand for increasingly slimmer and brighter liquid crystal display (LCD) panels has led to an increased focus on the role of light guide panels (LGPs) or optical films that are used to obtain diffuse, uniform light from the backlight unit (BLU). The most basic process in the production of such BLU components is the micromachining of V-shaped grooves. Thus, given the current trend, micromachining of V-shaped grooves is expected to play increasingly important roles in today's manufacturing technology. LCD BLUs comprise various optical elements such as a LGP, diffuser sheet, prism sheet, and protector sheet with V-shaped grooves. High-aspect-ratio patterns are required to reduce the number of sheets and enhance light efficiency, but there is a limit to the aspect ratio achievable for a given material and cutting tool. Therefore, this study comprised a series of experimental evaluations conducted to determine the machining limit in microcutting V-shaped grooves on electroless nickel plated die materials when using single-crystal diamond tools with point angles of $20^{\circ}-80^{\circ}$. Cutting performance was evaluated at various cutting speeds and depths of cut using different machining methods and machine tools. The experimental results are that V-shaped patterns with angles of $80^{\circ}$ or up can be realized regardless of the machining conditions and equipment. Moreover, the feed rate has little effect on machinability, and it is thought that the fly-cut method is more efficient for shallow patterns.

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (II) - Laser Weldability of Hot Stamping Steel with Ultra-High Strength - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (II) - 초고강도 핫스탬핑강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Park, In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1373-1377
    • /
    • 2014
  • Hot-stamping is a method of obtaining ultrahigh-strength steel by simultaneously forming and cooling boron steel in a press die after it has been heated at $900^{\circ}C$ or above. After heat treatment, boron steel has a strength of 1500 MPa or more. This material ensures a high level of quality because it overcomes the spring-back phenomenon, which is a problem associated with high-strength steel materials, and the degree of dimensional precision is improved by 90 or more because of the good formability compared with existing types of steel. In this study, the welding characteristics were identified through the butt and lap welding of hot-stamped steel using a disk laser. Full penetration was obtained at a faster speed with butt welding compared to lap welding, and a white band was observed in every specimen.

Development of Quality Control Method for a Novel Herbal Medicine, HPL-1 using UHPLC (UHPLC를 이용한 새로운 한약제제 HPL-1의 품질관리법 개발)

  • Kim, Se-Gun;Lamichhane, Ramakanta;Lee, Kyung-Hee;Jung, Hyun-Ju
    • The Korea Journal of Herbology
    • /
    • v.30 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Objectives : HPL-1, a novel herbal medicine which is composed of five herbs such as Kalopanacis Cortex, Chaenomelis Fructus, Raphani Semen, Atractylodis Rhizoma and Pulvis Aconiti Tuberis Purificatum, was developed for treatment of osteoarthritis. This study is aimed to develop analytical method for consistent quality control of HPL-1 and validate chromatographic method. Methods : Chromatographic analysis was performed using ultra-high performance liquid chromatography - diode array detector (UHPLC-DAD) equipped with RP-amide column, column oven, and auto sampler. Marker compounds [protocatechuic acid, chlorogenic acid, liriodendrin, 3,5-dicaffeoylquinic acid, ${\beta}$-D-(3-O-sinapoyl)-fructofuranosyl-$\alpha$-D-(6-O-sinapoyl)glucopyranoside and benzoylmesaconine] were separated by step gradient elution of acetonitrile and 0.1% phosphoric acid/water. The method validation was evaluated by quantitative validation parameters of linearity, accuracy, precision, limit of detection (LOD) and limit of quantification (LOQ) according to KFDA guideline.Results : An optimized method for six marker compounds in HPL-1 was established by UHPLC-DAD. The correlation coefficient (R2) with each calibration curve was greater than 0.99. The LOD and LOQ were within the range of 0.008-0.090 and $0.023-0.274{\mu}g/mL$, respectively. The relative standard deviation (RSD) of intra- and inter-day variability were less than 4.0%. The result of recovery test was range from 93.3-106.3% with RSD < 4.0%.Conclusions : These results suggest that the quantitative UHPLC method is precise, accurate, effective for quality evaluation of HPL-1. The method may also contribute to improve quality of crude drug preparations used for treatment of various diseases.

Wear Characteristics for Rod and Nozzle of Jetting Dispenser Driven by Dual Piezoelectric Actuators Under High Frequency with Phosphor-containing Liquid (형광체 함유 용액 고속 토출 조건에서의 듀얼 압전 디스펜서 공이와 노즐의 마모 특성 평가)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;An, Jun-Wook;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.52-58
    • /
    • 2017
  • An ultra-high precise ejection process is essential in a dispensing system for fabricating various precision parts such as a semiconductor, LED, and camera module. The size of such parts has been decreasing, which implies that a precise ejecting technique is required. A phosphor-containing liquid is ejected via a dispenser using dual piezoelectric actuators that are used for generating a high-speed dispensing mechanism. The rod and nozzle continuously contact in high speed to eject the liquid. However, the high-strength filler or phosphor in the liquid causes wear on the surfaces of the rod and nozzle during the dispensing process. As a result, the ejection reliability decreases as the wear on the surfaces increases. Therefore, it is necessary to estimate the wear characteristics of the rod and nozzle via an experiment and FE analysis. Reliability rests up to 1,000 cycles are conducted under relatively severe conditions. The flow rate and surfaces roughness of the rod and nozzle are measured in each ejection cycle. The surface images and wear volume are obtained before and after the tests and the ejection reliability is confirmed by measuring the flow rate of the liquid. The experimental results show that the ejection reliability is maintained up to 1,000k cycles; these results are validated by the simulation results.

Study on the Effect of Thermal Property of Metals in Ultrasonic-Assisted Laser Machining (초음파 원용 레이저 가공에서 재료의 열적 물성이 표면상태에 미치는 영향에 관한 연구)

  • Lee, Hu Seung;Kim, Gun Woo;Park, Jong Eun;Yang, Min Yang;Cho, Sung Hak;Park, Jong Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.759-763
    • /
    • 2015
  • The laser machining process has been proposed as an advanced process for the selective fabrication of electrodes without a mask. In this study, we adapt laser machining to metals that have different thermal properties. Based on the results, the metals exhibit a different surface morphology, heat-affected zone (HAZ), and a recast layer around the machined surface according to their thermal conductivity, boiling point, and thermal diffusivity. Then, we apply ultrasonic-assisted laser machining to remove the recast layer. The ultrasonic-assisted laser machining exhibits a better surface quality in metals with higher diffusivity than those having lower diffusivity.

Simultaneous Determination of the Flavonoids and Limonoids in Citrus junos Seed Shells Using a UPLC-DAD-ESI/MS

  • Jo, Ara;Shin, Ji hun;Song, Hwa young;Lee, Ye Eun;Jeong, Da Eun;Oh, Sung Hwa;Mun, Myung Jae;Lee, Mina
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2020
  • Citrus junos seeds (CS) have been traditionally used for the treatment of cancer and neuralgia. They are also used to manufacture edible oil and cosmetic perfume. A large amount of CS shells without oil (CSS) are discarded after the oil in CS is used as foods or herbal remedy. To efficiently utilize CSS as a by-products, it needs to be studied through chemical analysis. Therefore, we developed an ultra-performance liquid chromatography (UPLC)-diode array detection (DAD) method for simultaneous determination and quantitative analysis of five components (two flavonoids and threes limonoids) in CSS. A Waters Acquity UPLC HSS T3 column C18 (2.1 × 100 mm, 1.8 ㎛) was used for this separation. It was maintained at 40 ℃. The mobile phase used for the analysis was distilled water and acetonitrile with gradient elution. To identify the quantity of the five components, a mass spectrometer (MS) with an electrospray ionization (ESI) source was used. The regression equation showed great linearity, with correlation coefficient ≥ 0.9912. Limits of detection (LOD) and limits of quantification (LOQ) of the five compounds were 0.09 - 0.13 and 0.26 - 0.38 ㎍/mL, respectively. Recoveries of extraction ranged from 97.45% to 101.91%. Relative standard deviation (RSD) values of intra- and inter-day precision were 0.06 - 1.15% and 0.19 - 0.25%, respectively. This UPLC-DAD method can be validated to simultaneously analyze quantities of marker flavonoids and limonoids in CSS.

Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS

  • Wang, Hong-Ping;Zhang, You-Bo;Yang, Xiu-Wei;Zhao, Da-Qing;Wang, Ying-Ping
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.382-394
    • /
    • 2016
  • Background: Ginsenosides are the characteristic and principal components which manifest a variety of the biological and pharmacological activities of the roots and rhizomes of Panax ginseng (GRR). This study was carried out to qualitatively and quantitatively determine the ginsenosides in the cultivated and forest GRR. Methods: A rapid and sensitive ultra-high-performance liquid chromatography coupled with diode-array detector and quadrupole/time of flight tandem mass spectrometry (UPLC-DAD-QTOF-MS/MS) was applied to the qualitative analysis of ginsenosides and a 4000 QTRAP triple quadrupole tandem mass spectrometer (HPLC-ESI-MS) was applied to quantitative analysis of 19 ginsenosides. Results: In the qualitative analysis, all ingredients were separated in 10 min. A total of 131 ginsenosides were detected in cultivated and forest GRR. The method for the quantitative determination was validated for linearity, precision, and limits of detection and quantification. 19 representative ginsenosides were quantitated. The total content of all 19 ginsenosides in the forest GRR were much higher than those in the cultivated GRR, and were increased with the growing ages. Conclusion: This newly developed analysis method could be applied to the quality assessment of GRR as well as the distinction between cultivated and forest GRR.

Developing an Instrument Ensuring Reliable Contact Conditions for Contact-Type Area-varying Capacitive Displacement Sensors (접촉식 면적변화형 정전용량 변위센서의 접촉 안정성을 위한 기구의 개발)

  • Kim, Sung-Joo;Lee, Won-Goo;Moon, Won-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1147-1156
    • /
    • 2011
  • A contact-type area-varying capacitive displacement sensor, or CLECDiS, can measure displacements over millimeter ranges with nanometer resolution. However, a small changes in the contact condition due to the surface profile or friction, which are inherent characteristics of contact-type sensors, lead to significant distortion of the output signal. Therefore, ensuring reliable contact conditions during CLECDiS measurements is the most important area to be improved in their actual use. Herein, in order to design an instrument for ensuring reliable contact conditions, the contact condition is analyzed by characterizing the signal distortion, observing the pressure distribution between the contacting surfaces, and measuring the motional errors of the sensor using a laser Doppler vibrometer (LDV). The manufactured instrument enables a CLECDiS to be used in an ultraprecise positioning system with improved reliability.