• Title/Summary/Keyword: Ultra high strength

Search Result 724, Processing Time 0.023 seconds

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

the Application and Structural Behavior of Ultra High Strength Concrete on Sam Sung Sin-Dae Bang project. (초고층 주상복합 건물에의 초고강도 콘크리트의 시공 및 구조적 성능)

  • 신성우;이광수;최종수;유석형;안종문;윤영수;성상래;백승준;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.313-318
    • /
    • 1994
  • This paper present the application and Structural Behavior of Ultra-High Strength Concrete on Samsung Sin Dae-Bang Housing-Commercial Combined building with 28 story including 8 story basement in seoul. 70 MPa compressive strength has been placed for all 8 basement shear wall. 42 MPa design strength concrete was used for other basement and frame up to 10th floor which us used for commercial purposes

  • PDF

Examination of Strain Model Constants considering Strain Properties at High Temperature of Ultra-high-strength Concrete (초고강도 콘크리트의 고온 변형 특성을 고려한 변형모델 상수 검토)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.91-97
    • /
    • 2016
  • Evaluation on the test of actual concrete member to confirm the fire resistance of the concrete member using ultra-high strength concrete is required. However, test equipment which has large loading capacity is needed to the actual member experiment. So, many researchers evaluated the fire performance through analytical studies using the material models. This study experimentally evaluated strain properties on ultra-high-strength concrete of 80, 130 and 180 MPa with heating and examined to apply the existing strain model about ultra-high-strength concrete. As a results, constants are drawn by method of least squares applying experimental values and calculated values by the existing strain model, it proposed strain model that can be applied to ultra-high-strength concrete.

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.

Design Guideline for Press Tool Structure of Ultra-high Strength Steel Part with Shape Optimization Technique (형상최적화 기법을 이용한 초고강도강판 성형용 프레스 금형의 구조설계 가이드라인)

  • Kang, K.H.;Kwak, J.H.;Bae, S.B.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.372-377
    • /
    • 2017
  • In this paper, an effective design procedure was proposed to design the rib of die structure for auto-body member with ultra-high strength steel (UHSS) having ultimate tensile strength (UTS) of 1.5 GPa. From analysis results of the die structure, structural safety of the die was evaluated with information such as displacement and von-Mises stress. It was concluded that the casting part could be designed in order to reduce tool deformation. A design guideline of the die structure was proposed, especially for the rib structure in the casting part with an optimization scheme and local reinforcement concept. Simulation result following the design guideline fully explained that stability of the tool structure could be obtained simultaneously with weight minimization.

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.

A Study on the Forming of Automotive Front Side Member Part with Ultra High Strength Steel of DP980 (980MPa급 초고장력 강판의 자동차 프런트 사이드 멤버 부품 성형에 관한 연구)

  • Cha, C.H.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • This paper is concerned with forming technology of an automotive front side member part with ultra high strength steel sheet of DP980. The forming technology considered in this paper is the draw & form type, which installs the upper pad and lower pad to produce the complicated shape of ultra high strength steel sheet. In order to produce sound product, comparison between form type and draw & form type and between draw type and draw & form type are investigated by FE-analysis. FE-analysis is carried out with commercial sheet metal forming analysis S/W, DYNAFORM. It was shown from FE-analysis that the draw & form type satisfied the required specifications such as the dimensional accuracy and soundness of automotive front side member part. The effectiveness of the analytical result was verified by the experiment. From this investigation, the draw & form type is proved to be able to supply useful forming technology in forming ultra high strength steel.

Properties Strength and Autogenous Shrinkage on the Ultra High Performance Concrete by Fiber Type and Pre-mix Binder (섬유종류 및 결합재의 프리믹스에 따른 초고성능콘크리트의 강도 및 자기수축 특성)

  • Gu, Gyeong-Mo;Hwang, In-Seong;Kim, Won-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.275-276
    • /
    • 2018
  • Ultra high performance concrete(UHPC) represents high early age autogenous shrinkage strain due to its low water-to-binder ratio(W/B) and high fineness admixture usage. It has been reported that fiber can control restrained tensile stress and crack. The purpose of the present study is, therefore, to investigate the autogenous shrinkage as well as mechanical properties including compressive strength, flexural strength and modulus of elasticity on the UHPC with fiber type and pre-mix of binder.

  • PDF

Study of strength Development of Ultra High-Strength Concrete (초고강도 콘크리트의 강도발현에 관한 기초적 연구)

  • Min, Hong-Jun;Gong, Min-Ho;Lim, Nam-Gi;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.75-79
    • /
    • 2006
  • Recently, more highly effective construction materials are needed for the reasonable and economical structure system is required as the construction structures become more multi storied, large-sized and diversified. That is to say, the highly qualified concrete is positively promoted as a part of plan to establish the effective space according to the dead load of structures and diminish of segment profile and to build up the economic structures. However, the high strength concrete has the problems such high brittleness and low ductility. Specially, for the high strength concrete, it has different strength from normal concrete as the internal temperature goes up steadily due to high heat of hydration by the quantities of highly level of cement, so the concrete which is mixed with various miscible materials is used. As the development and study for high strength concrete (more than $100N/mm^2$) is under way actively and the strength of high strength concrete increases, the strength different from the existing high strength concrete of ten than $100N/mm^2$, but the study for this is not adequate and indefinite. In addition, the study and report to apply the strength expression and analysis results of internal structure. Therefore, this study is an experiment about using the miscible materials affects what happens to the longitudinal physical property.

  • PDF

An Experimental Study on the Compressive Strength of Ultra High Strength Concrete with Vacuum Water Absorbing Curing (진공포수양생을 적용한 초고강도 페이스트의 압축강도 발현에 관한 실험적 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.27-28
    • /
    • 2019
  • In this study, the characteristics of compressive strength of ultra high strength concrete supplied with moisture from outside by vacuum water absorbing curing method were investigated. Specimens were prepared by replacing the binder(Silifa fume and GGBS) by 25 wt% with respect to the weight of cement at W/B 0.16. Each specimen was subjected to water Vacuum absorbing curing time 0 min, 30 min, 60 min, 90 min and 120 minutes immediately after the demolding. Curing was performed at $20^{\circ}C$ Air-dry curing, $90^{\circ}C$ steam curing, $90^{\circ}C$ steam curing and $180^{\circ}C$ autoclave curing. Experimental results showed that water absorbing degree increased with increasing water absorbing curing time, and BS25 sample had higher water absorbing degree than SF25 sample at same time. Compressive strength tended to increase up to about 40% in water absorbing degree, but compressive strength decreased again in water absorbing more than 40%.

  • PDF