• Title/Summary/Keyword: Ultra Precision Processing

Search Result 93, Processing Time 0.029 seconds

Reliability prediction of Centerless grinding machine (무심연삭 시스템의 신뢰성 예측)

  • Choi, H.Z.;Lee, S.W.;Kim, G.H.;ChoI, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1105-1108
    • /
    • 2004
  • As recently optical communication industry is developed, request of optical communication part is increased. Ferrule is very important part which determines transmission efficiency and quality of information in the optical communication part. Most of ferrule processes are grinding which request high processing precision. The ultra precision centerless grinding machine for ferrule grinding was designed. The centerless grinding machine is composed of the high damping bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. Reliability prediction was very important for the high quality design. In this study, centerless grinding machine was predicted reliability.

  • PDF

경면 연삭기 베드를 위한 레진 콘크리트에 관한 연구

  • 김현석;김기수;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.108-113
    • /
    • 1993
  • The material for the machine tool structure should have high static stiffiness and damping in its property to improve both the static and dynamic performances. The static stiffness of a machine tool can be inceased by using either higher modulus material in the structure of a machine tool. However, the machine tool structrue with high stiffness but low damping is vulnerable to vibration at the resonance frequencies of the structure . For the high precision and highsped machine tool structure, therefore, the high damping capacity is most important in order to suppress vibration. The damping of a machine tool can not be increased by increasing the static stiffness. The best way to increase the damping capacity of the machine tool structure is to use a composite material which is composed of on material with high stiffness with low damping and another material with low stiffness with high damping. Therefore, in this paper, the bed of the ultra high precision grinding machine for mirror surface machining of brittle materials such as ceramics and composite materials was designed and manufactured with the epoxy concrete material. The epoxy concrete material was prepared by mixing epoxy resin with different size sands and gravels. The modulus, compressive strength, coefficient of thermal expansion, specific heat, and damping factor were measured by varying the compaction ratio, sizes and contents of the ingredients to assess the effect of the processing parameters on the mechanical properties of the material. Based of the measured properties, the prototype epoxy resin concrete bed for the mirror surface CNC grinding machine was designed and manufactured.

A study on gold wire-thin film welding using laser (레이저를 이용한 골드 와이어-박막 용접에 관한 연구)

  • Park, K.W.;Na, S.J.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.108-111
    • /
    • 2006
  • Recently, mobile information devices, such as cellular phone, PDA(Personal Digital Assistant, PDA) are getting smaller and thinner. Accordingly, ultra precision welding technology is required to manufacture the high performance system for use in the telecommunication industry. In this study, we propose the laser micro welding process. Using ytterbium fiber laser, a wide range of experiments have been carried out for the gold wire-to-gold thin film welding.

  • PDF

Design and Implementation of A Dynamic Structure Design System for Ultra Precision FAB. Structure based on Semi-Empirical Method (준 경험적 기법에 의한 차세대 초정밀 FAB. 구조물의 통합 동적 구조 설계 시스템 설계 및 구현)

  • Lee, Hyun-jun;Lee, Kyong-oh;Lee, Gyu-seop
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1245-1248
    • /
    • 2012
  • 반도체와 LCD 산업분야, 나노급 공정 및 검사기술이 요구되는 산업분야의 수요증가에 따라 초정밀 가공/생산/검사 장비를 설치, 운용하는 FAB. 구조물의 설계요구가 증대되고 있으며, 건물의 환경진동 규제치도 강화되고 있는 실정이다. 이와 같은 대형 구조물에서의 서브 마이크로 수준의 미진동(微振動)을 제어하는 문제는 진동 응답을 결정하는 구조와 재료가 복잡하고 다양한 형태를 갖고 있는 반면, 다루어야 할 동적 응답은 극한적으로 작은 마이크로 이하의 값을 다루어야 하기 때문에 매우 어렵다. 따라서 기존에 이용되고 있는 해석과 실험의 결과만으로는 신모델 설계에 적용하기 어렵다. 따라서, 본 논문에서는 실험적 데이터와 경험적 데이터들을 기반으로 구축된 데이터베이스를 이용하여 새로운 초정밀 FAB. 동적 구조 설계 시스템을 구현한다.

A Design of Dynamic Structure Database for Ultra Precision FAB. Structure based on Semi-Empirical Method (준 경험적 기법에 의한 차세대 초정밀 FAB. 구조물의 통합 동적 구조 데이터베이스 설계)

  • Lee, Hyun-jun;Lee, Kyong-oh;Lee, Gyu-seop
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.868-871
    • /
    • 2012
  • 반도체와 LCD 산업 분야, 나노급 공정 및 검사 기술이 요구되는 산업 분야의 수요 증가에 따라 초정밀 가공/생산/검사 장비를 설치, 운용하는 FAB. 구조물의 설계 요구가 층증대 되고 있다. 이에 따라 건물의 환경진동 규제치도 강화되고 있는 실정이다. 이와 같은, 대형 구조물에서 서브마이크로 수준의 미진동(微振動)을 제어하는 문제는 여전히 어려운 과제로 남아 있다. 이는 진동 응답을 결정하는 구조와 재료가 복잡하고 다양한 형태를 갖고 있는 반면, 다루어야 할 동적 응답은 극한적으로 작은 마이크로(micro) 이하의 값을 다루어야 한다. 그러므로, 기존에 이용되고 있는 해석과 실험의 결과만으로는 신모델 설계에 적용하는 것은 어렵다. 따라서, 본 논문에서는 이러한 영역의 경험적 데이터물을 체계적인 데이터베이스로 구축하여 새로운 동적 구조 설계 기술의 기반을 제공하고자 한다.

A Design of seismic monitoring system for Ultra Precision FAB. Structure (지진재해 대비 정밀 FAB. 구조물의 모니터링 시스템 설계)

  • Lee, Hyun-Jun;Song, Won-kil;Lee, Kyong-Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.850-852
    • /
    • 2013
  • 산업발전에 따라 초정밀 가공/생산/검사 장비를 설치, 운용하는 FAB. 구조물의 건축이 증대되고 있으며, 이에 따라 건물의 환경진동 규제치도 강화되고 있는 실정이다. 한국은 일본이나 동남아 국가들과는 달리 지진에 대한 피해가 직접적으로 보고되고 있지는 않지만, 동일본 지진에서와 같이 인접국가의 대규모 지진은 초정밀 장비의 작동에 심각한 영향을 준다. 따라서, 본 논문에서는 대규모 지진에 영향을 받는 일반 건물과 미세한 지반 진동에도 영향을 받는 정밀 FAB. 에서 운용이 가능한 범용적인 지진재해 대비 모니터링 시스템의 설계에 대해 서술한다.

Ultra Finishing by Magnet-abrasive Grinding for Internal-face of STS304 Pipe (STS304 파이프 내면의 초정밀 자기연마)

  • 김희남;윤영권;심재환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.947-952
    • /
    • 1997
  • The magnetic polishing is the useful method to finish using magnetic power of a magnet. The time hasn't been that long since the magnetic polishing method was introduced to korea as one of precision polishing techniques. However, the reasons for not being spreaded widely are the magnetic polishing method don't have mediocrity for machine, the efficiency of magnet-abrasive is confined as a bad polishing, and there are not many researchers in this field. The mechanism of this R&D is dealing with the dynamic state of magnet-abrasive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get a best surface roughness with low cost. Beside the subsidiary experiment was performed using the mixed magnet-abrasive with general alumina, barium. This paper introduced the main reason for difficulty using this method in industrial field. It needs more continues research on it. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. The average diameters of magnet-abrasive are the particles of 150 $\mu\textrm{m}$, 250 $\mu\textrm{m}$.

  • PDF

Grinding Technology for Surface Texturing (연삭기법을 이용한 패터닝 기술)

  • Ko, Tae Jo;Han, Do Sup;Qiu, Kang;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.367-373
    • /
    • 2014
  • Surface texturing is a machining process on the surface to give engineering functions. The representative process of the surface texturing is lotus effect to give hydrophobic property by the lithography and chemical etching, which is the bio mimic from the nature. Surface texturing can be manufactured by a lot of processes, in particular using mechanical method such as a precise diamond turning, grinding, rolling, embossing, vibrorolling, and abrasive jet machining (AJM). Among them, the grinding process is notable in terms of the wide range of texturing area and fast processing time. The patterning by grinding is done by the grooved grinding wheel on the work piece. In this case, the pattern shape is determined by the grinding conditions as well as the wheel dressing conditions. In this paper, experimental study on the pattern shapes were done and provide the feasibility in use for the large area patterning.

Experimental Implementation of Continuous GPS Data Processing Procedure on Near Real-Time Mode for High-Precision of Medium-Range Kinematic Positioning Applications (고정밀 중기선 동적측위 분야 응용을 위한 GPS 관측데이터 준실시간 연속 처리절차의 실험적 구현)

  • Lee, Hungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.31-40
    • /
    • 2017
  • This paper deals with the high precision of GPS measurement reduction and its implementation on near real-time and kinematic mode for those applications requiring centimeter-level precision of the estimated coordinates, even if target stations are a few hundred kilometers away from their references. We designed the system architecture, data streaming and processing scheme. Intensive investigation was performed to determine the characteristics of the GPS medium-range functional model, IGS infrastructure and some exemplary systems. The designed system consisted of streaming and processing units; the former automatically collects GPS data through Ntrip and IGS ultra-rapid products by FTP connection, whereas the latter handles the reduction of GPS observables on static and kinematic mode to a time series of the target stations' 3D coordinates. The data streaming unit was realized by a DOS batch file, perl script and BKG's BNC program, whereas the processing unit was implemented by definition of a process control file of BPE. To assess the functionality and precision of the positional solutions, an experiment was carried out against a network comprising seven GPS stations with baselines ranging from a few hundred up to a thousand kilometers. The results confirmed that the function of the whole system properly operated as designed, with a precision better than ${\pm}1cm$ in each of the positional component with 95% confidence level.

Prediction of Surface Roughness on the PCD Tool Turned Aluminum Alloys by using Regression Analysis (Al합금 PCD 선산가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.41-47
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystaline Diamond) has been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of different types of aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.