• 제목/요약/키워드: Ultra Precision Polishing Machine

검색결과 30건 처리시간 0.023초

Abrasive Film Polishing을 이용한 SUS-304의 표면거칠기·잔류응력 분석 (An analysis on the surface roughness and residual stress of SUS-304 using abrasive film polishing)

  • 신봉철;김병찬;임동욱;민경호
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.16-21
    • /
    • 2018
  • Recently, as the demand for high-precision parts increases due to industrial development, a machine tool system for ultra-precision machining and polishing has been actively developed. As a result, there is an increasing demand for ultra-precision surface roughness along with dimensional processing. However, due to the increase in processing time due to the demand for ultra-precise surfaces and enormous facility investment, it is difficult to secure competitiveness. The polishing process using the abrasive film in super precision machining has been applied to machines, electronic devices, aerospace, and medical fields. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Also, application of industrial field is increasing due to advantages such as low noise and low dust. Recently, researches on stainless steel having strong resistance to corrosion, heat resistance, heat resistance, toughness and weldability have been actively conducted with respect to the nuclear energy industry or marine development. Therefore, in this study, surface roughness and residual stress were measured after SUS304 polishing using dynamic analysis of film polishing apparatus and polishing film.

다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성 (A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine)

  • 김건희;고준빈;김홍배;원종호
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

초정밀가공기를 이용한 알루미늄반사경의 절삭특성 (A Study of Aluminum reflector manufacturing in diamond turning machine)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1125-1128
    • /
    • 2001
  • A 110mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning(SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

자기전해 가공시스템에 의한 국가 표준원기의 초정밀 표면 가공에 관한연구 (A Study on the Ultra-precision Machining of National Standard Electrode by the Magnetic-Electrolytic-Abrasive Polishing System)

  • 김정두
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.137-142
    • /
    • 1996
  • Magnetic-electrolytic-abrasive polishing system(MEAPS) was developed for machining national standard electrode and its finishing characteristics was analyzed. The paper describes the operational principle of MEAP system by experimental results. The finishing characteristics and optimal finishing condition for national standard electrodes were experimented and analyzed. As a result, MEAPS can improve straightness as well as surface roughness.

  • PDF

보정 가공 프로그램을 활용한 비구면 형상정밀도 향상에 관한 연구 (The Performance Improvement of the Aspheric Form Accuracy by Compensation Machining Program)

  • 박요창;양순철;김건희;이영호
    • 한국기계가공학회지
    • /
    • 제4권2호
    • /
    • pp.10-15
    • /
    • 2005
  • For the development of compensation machining program, ultra precision grinding used in ultra precision machine and corrective machining was studied. We explored a new rough grinding technique on optical material such as zerodur. The facility used is a polishing machine with a custom grinding module and a range of diamond resin bond wheel. Surface roughness and form accuracy are measured by surface measurement equipment(Form Talysurf series2). Our compensation machining program has complied with a target of producing surface roughness better than $0.05{\mu}m$ Ra and form accuracy of around $0.05{\mu}m$ Rt and has been unveiled as a work-hour model.

  • PDF

STS304 파이프 내면의 초정밀 자기연마 (Ultra Finishing by Magnet-abrasive Grinding for Internal-face of STS304 Pipe)

  • 김희남;윤영권;심재환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.947-952
    • /
    • 1997
  • The magnetic polishing is the useful method to finish using magnetic power of a magnet. The time hasn't been that long since the magnetic polishing method was introduced to korea as one of precision polishing techniques. However, the reasons for not being spreaded widely are the magnetic polishing method don't have mediocrity for machine, the efficiency of magnet-abrasive is confined as a bad polishing, and there are not many researchers in this field. The mechanism of this R&D is dealing with the dynamic state of magnet-abrasive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get a best surface roughness with low cost. Beside the subsidiary experiment was performed using the mixed magnet-abrasive with general alumina, barium. This paper introduced the main reason for difficulty using this method in industrial field. It needs more continues research on it. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. The average diameters of magnet-abrasive are the particles of 150 $\mu\textrm{m}$, 250 $\mu\textrm{m}$.

  • PDF

적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구 (A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror)

  • 김건희;김효식;신현수;원종호;양순철
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.44-50
    • /
    • 2006
  • This paper describs about the technique of ultra-precision machining for an infrared(IR) camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM(Single Point Diamond Turning Machine). Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8\;nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector. The cutting force and the surface roughness are measured according to each cutting conditions feed rate, depth of cut and cutting speed, using diamond turning machine to perform cutting processing. As a result, the surface roughness is good when feed rate is 1mm/min, depth of cut $4{\mu}m$ and cutting speed is 220 m/min. We could machined the primary mirror for IR camera in diamond machine with a surface roughness within $0.483{\mu}m$ Rt on aspheric.

금형면의 자기연마가공 고효율에 관한 연구 (A Study on Improving the Efficiency of Magnetic Abraslve Polishing for Die & Mold Surfaces)

  • 이용철;안제정박;중천위웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.98-102
    • /
    • 1994
  • There are many difficulties in automatic polishing for die & mold surfaces. Even though the process has been studied in the past 15 years, it has not been achieved yet, but by the process of actual hand work of well-skilled workers. A new magentic assisted polishing process, which is one of the potential method for automation of surface finishing has been studied in the past 10 years by colleagues. The process has many merits, but on the other hand also has demerits, one being low efficiency of gridability by comparision with grinding wheel polish. Therefore, some attempts were tried to improve the grindability by adopting electropolishing, ultra-high speed milling, 5-axis controlled machine etc... most recently by collegues. This study also aims to improve the efficiency of polishing by introducing the easily-polished shape surface milling method equalizing the tool feed per tooth to the pick feed. This milling method was experimentally confirmed to have sufficient grindability to polish milled surface (with 10 .mu. mRmax surface roughness) into mirror surface (with 0.4 .mu. mRmax surface roughness).

  • PDF

금형면의 자기연마가공 고효율화에 관한 연구 (A Study on Improving the Efficiency of Magnetic Abrasive Polishing for Die & Mold Surfaces)

  • 이용철;안자이 마사히로;나카가와 타케오
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.59-65
    • /
    • 1996
  • There are many difficulties in automatic polishing for die & mold surfaces. Even though the process has been studied in the past 15 years, it has not been achieved yet, but by the process of actual hand work of well-skilled workers. A new magentic assisted polishing process, which is one of the potential methods for automation of surface finishing has been studied in the past 10 years by colleagues. The process has many merits, but on the other hand also has demerits, one being low efficiency of grindability by comparision with wheel polish. Therefore, some attempts were tried to improve the grindability by adopting electropolishing, ultra-high speed milling, 5-axis controlled machine etc... most recently by colleagues. This paper also aims to improve the efficiency of polishing by introducing the easily-polished shape surface cutting method equalizing the tool feed per revolution to the pick feed. This cutting method was experimentally confirmed to have sufficient grindability to polish milled surface (with $10{{\mu}m}$Rmax surface roughness) into mirror surface (with $0.4{{\mu}m}$Rmax surface roughness).

  • PDF

자기연마법을 이용한 금형면의 다듬질 가공자동화 연구 (A Study on Automatic Finishing for Die & Mold Surface Using Magnetic Abrasive Polishing)

  • 이용철;안제정박;중천위웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.97-101
    • /
    • 1995
  • This paper describes a new surface finishing process which uses magnetic abrasive polishing. This is applied to automatic finishing of die & mold surface. Nowadays, most of die & mold meanufaturing procedures have been automated by the introduction of NC machine tool and CAD/CAM system. But the surface finishing of die & mold must be done by hand work of well-skilled workers. Though many attempts were tried in the past 15 years to eliminate this hand work, the automatic finishing of die & mold surface with 3D curvature has not been achieved yet. New magnetic abrasive finishing process is thought as one of the possible methods for the automation of 3D surface finishing. In order to improve the grindability of the method, ultra-high speed and 5-axis machining was introduce. The magnetic abrasive polishing which has adopted these methods was confirmend to improve the efficiencyof die & mold surface finishing.

  • PDF