• Title/Summary/Keyword: Ultra Precision Engineering

Search Result 643, Processing Time 0.027 seconds

Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors (Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정)

  • 김의중;송승훈;김민기;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF

Tool Locus Analysis of Ultra-precision Inclined Grinding (초정밀 경사축 연삭가공에서의 공구 궤적 해석)

  • Hwang, Yeon;Park, Soon-Sub;Lee, Ki-Yong;Won, Jong-Ho;Kim, Hyun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.35-40
    • /
    • 2009
  • This paper presents the geometrical analysis of an inclined ultra-precision grinding technology using simulations about grinding point locus for micro lens manufacturing. Simulation results show the relationship between radius ratios ($R_1/R_2$) and wheel center locus. Furthermore, the critical grinding wheel radius ($R_1$) can be calculated from work-piece radius ($R_2$) and inclined angle ($\theta=-45^{\circ}$). These achievements could be applied to calculate CNC data in ultra-precision grinding and give insight for wheel wear and compensation grinding.

Ultra-precision Cutting of Polycarbonate for Optical Components by Using Elliptical Vibration Cutting Method (타원진동절삭가공법에 의한 광학부품용 폴리카보네이트 수지의 초정밀가공)

  • Song, Young-Chan;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.42-49
    • /
    • 2009
  • The optical elements made of plastics are normally produced by mass production such as injection molding with use of precision dies and molds. It costs to prepare the dies and molds, and it is only justified to prepare such expensive dies and molds when the parts are massively produced. On the other hand, it is too expensive and inefficient when precision plastic parts are needed only in small quantities, such as a case of trial manufacturing of new products. An ultra-precision diamond cutting is one of promising processes to produce the precision plastic parts in such cases. But it is commonly believed that an ultra-precision cutting of plastics for optical components is very difficult, because they are thermo-plastic material. In the present research, an ultra-precision diamond cutting of polycarbonate (PC), that is one of typical optical materials, was tried by using elliptical vibration cutting method. It is experimentally proved that good optical surfaces were obtained by using elliptical vibration cutting in cases of grooving and flat surfaces. The maximum surface roughness of less than 60 nm in peak to valley value is acquired.

The Development of CAM Software for Ultra-precision Aspheric Surface (초정밀 비구면 선삭가공용 CAM 소프트웨어 개발에 대한 연구)

  • 양민양;이택민;이성찬;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.534-537
    • /
    • 1996
  • As consumer electronics, information, and aero-space industry grow, the demand for aspheric lens increases higher. To enhance the precision and productivity of aspheric surface, a CAM system for ultra-precision aspheric surface needs to be realized. In this study, the developed CAM system can generate NC code for various aspheric surfaces fast and precisely by Tri-arc interpolation method that the location of maximum error is fixed. The cutting condition input module and the NC code verification module are adequate to ultra-precision machining, so that a operator can obtain products fast and easily.

  • PDF

Optimal Design of Controller for Ultra-Precision Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 최적제어기 설계)

  • Kwak, L. K.;kim, J. Y.;Yang, D. J.;Ko, M. S.;You, S.;Kim, K. T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation (초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석)

  • Kim, Jae-Yeol;Kwak, Yi-Gu;Yoo, Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.